https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Markov Chain Monte Carlo Methods - Part 1
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Markov Chain Monte Carlo Methods - Part 1

Bookmarks Report an error
Post-edited
Authors : Robert, Christian P. (Author of the conference)
CIRM (Publisher )

Loading the player...
Metropolis-Hastings algorithm Markov chains random walk geometric ergodicity reversible jump Langevin diffusion discretization optimal scale for random walk Gibbs sampler counter example: lack of convergence slice sampler convergence of the Gibbs sampler Hammersley-Clifford theorem Rao-Blackwellization danger of improper priors adaptive MCMC questions of the audience

Abstract : In this short course, we recall the basics of Markov chain Monte Carlo (Gibbs & Metropolis sampelrs) along with the most recent developments like Hamiltonian Monte Carlo, Rao-Blackwellisation, divide & conquer strategies, pseudo-marginal and other noisy versions. We also cover the specific approximate method of ABC that is currently used in many fields to handle complex models in manageable conditions, from the original motivation in population genetics to the several reinterpretations of the approach found in the recent literature. Time allowing, we will also comment on the programming developments like BUGS, STAN and Anglican that stemmed from those specific algorithms.

MSC Codes :
60J10 - Markov chains (discrete-time Markov processes on discrete state spaces)
62F15 - Bayesian inference
65C05 - Monte Carlo methods
65C40 - Computational Markov chains (numerical analysis)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 16/03/16
    Conference Date : 29/02/16
    Subseries : Research talks
    arXiv category : Statistics Theory ; Computer Science
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:05:32
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-02-29_Robert.mp4

Information on the Event

Event Title : Thematic month on statistics - Week 5: Bayesian statistics and algorithms / Mois thématique sur les statistiques - Semaine 5 : Semaine Bayésienne et algorithmes
Event Organizers : Le Gouic, Thibaut ; Pommeret, Denys ; Willer, Thomas
Dates : 29/02/2016 - 04/03/16
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1619.html

Citation Data

DOI : 10.24350/CIRM.V.18936903
Cite this video as: Robert, Christian P. (2016). Markov Chain Monte Carlo Methods - Part 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18936903
URI : http://dx.doi.org/10.24350/CIRM.V.18936903

See Also

Bibliography



Bookmarks Report an error