En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Modeling spontaneous metastasis following surgery and concomitant resistance: an in vivo-in silico approach

Bookmarks Report an error
Multi angle
Authors : Benzekry, Sébastien (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The post-surgical development of metastases (secondary tumors spread from a primary one) represents the major cause of death from a cancer disease. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression.
In this talk I will first describe a modeling approach that uses data from clinically relevant mouse models of spontaneous metastasis developing after surgical removal of orthotopically implanted primary tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was quantified using bioluminescence. The model was able to fit and predict pre-/post-surgical data at the level of the individual as well as the population. Importantly, our approach also enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a function of primary tumor size, where inter-individual variability was quantified by a key parameter of intrinsic metastatic potential. Critically, our analysis identified a highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence.
In the second part of my talk, I will focus on some very intriguing phenomenon concerning systemic interactions between tumors within the organisms, termed “concomitant resistance”, by which, in the presence of two tumors, one inhibits the growth of the other. This has important clinical consequences as it can lead to post-surgery metastatic acceleration. Based on experimental data involving the simultaneous growth of two tumor implants, we will test biological theories underlying this process and establish a biologically relevant and minimally parameterized mathematical model.
These findings represent a novel use of clinically relevant models to assess the impact of surgery on metastatic potential and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings to maximize patient benefit.

MSC Codes :
65C20 - Models (numerical methods)
92C37 - Cell biology
92C50 - Medical applications of mathematical biology

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 19/01/16
    Conference Date : 09/12/15
    Subseries : Research talks
    arXiv category : Quantitative Biology ; Analysis of PDEs
    Mathematical Area(s) : Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Video Time : 00:57:20
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-12-09_Benzekry.mp4

Information on the Event

Event Title : Present challenges of mathematics in oncology and biology of cancer / Nouveaux défis des mathématiques en oncologie et biologie du cancer
Event Organizers : André, Nicolas ; Barbolosi, Dominique ; Benabdallah, Assia ; Hubert, Florence
Dates : 07/12/15 - 11/12/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1412.html

Citation Data

DOI : 10.24350/CIRM.V.18907503
Cite this video as: Benzekry, Sébastien (2015). Modeling spontaneous metastasis following surgery and concomitant resistance: an in vivo-in silico approach. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18907503
URI : http://dx.doi.org/10.24350/CIRM.V.18907503

Bibliography

  • Benzekry, S., Tracz, A., Mastri, M., Corbelli, R., Barbolosi, D., & Ebos, J. (2015). Modeling spontaneous metastasis following surgery: an in vivo-in silico approach. Cancer Research - http://dx.doi.org/10.1158/0008-5472.CAN-15-1389

  • Brewster, A. M., Hortobagyi, G. N., Broglio, K. R., Kau, S.W., Santa-Maria, C. A., Arun, B., Buzdar, A. U., Booser, D. J., Valero, V., Bondy, M., & Esteva, F. J. (2008). Residual risk of breast cancer recurrence 5 years after adjuvant therapy. JNCI Journal of the National Cancer Institute, 100(16), 1179-1183 - http://dx.doi.org/10.1093/jnci/djn233

  • Coffey, J. C., Wang, J. H., Smith, M. J. F., Bouchier-Hayes, D., Cotter, T.G., Redmond, H. P. (2003). Excisional surgery for cancer cure: therapy at a cost. The Lancet Oncology, 4(12), 760-768 - http://dx.doi.org/10.1016/s1470-2045(03)01282-8

  • Ebos, J., Lee, C. R., Cruz-Munoz, W., Bjarnason, G., Christensen, J., & Kerbel, R. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15, 232-239 - http://dx.doi.org/10.1016/j.ccr.2009.01.021

  • Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell, 127(6), 679-695 - http://dx.doi.org/10.1016/j.cell.2006.11.001

  • Hahnfeldt, P., Panigrahy, D., Folkman, J., & Hlatky, L. (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Research, 59, 4770–4775 - http://cancerres.aacrjournals.org/content/59/19/4770.short

  • Hartung, N., Mollard, S., Barbolosi, D., Benabdallah, A., Chapuisat, G., Henry, G., Giacometti, S., Iliadis, A., Ciccolini, J., Faivre, C., & Hubert, F. (2014). Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice. Cancer Research, 74(22), 6397-6407 - http://dx.doi.org/10.1158/0008-5472.can-14-0721

  • Iwata, K., Kawasaki, K., & Shigesada, N. (2000). A dynamical model for the growth and size distribution of multiple metastatic tumors. Journal of Theoretical Biology, 203, 177-186 - http://dx.doi.org/10.1006/jtbi.2000.1075

  • Koscielny, S., Tubiana, M., Lê, M. G, Valleron, A. J., Mouriesse, H., Contesso, G., & Sarrazin, D. (1984). Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination. British Journal of Cancer, 49(6), 709–715 - http://dx.doi.org/10.1038/bjc.1984.112

  • Retsky, M., Demicheli, R., Hrushesky, W., Baum, M., & Gukas, I. (2010). Surgery triggers outgrowth of latent distant disease in breast cancer: an inconvenient truth? Cancers, 2(2), 305–337 - http://dx.doi.org/10.3390/cancers2020305

  • Talmadge, J. E., & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649-5669 - http://dx.doi.org/10.1158/0008-5472.can-10-1040



Bookmarks Report an error