https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Which geodesic flows are left-handed?
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Which geodesic flows are left-handed?

Bookmarks Report an error
Post-edited
Authors : Dehornoy, Pierre (Author of the conference)
CIRM (Publisher )

Loading the player...
Lorenz vector field surface of section first-return map intersection pairing Schwartzmann asymptotic cycle Fuller-Fried theorem Birkhoff section Hopf flow geodesic flow left-handed flows Ghys definition SO(3) negatively curved orbifold geodesic flow homology sphere unit tangent bundle surgery presentation template

Abstract : Left-handed flows are 3-dimensional flows which have a particular topological property, namely that every pair of periodic orbits is negatively linked. This property (introduced by Ghys in 2007) implies the existence of as many Bikrhoff sections as possible, and therefore allows to reduce the flow to a suspension in many different ways. It then becomes natural to look for examples. A construction of Birkhoff (1917) suggests that geodesic flows are good candidates. In this conference we determine on which hyperbolic orbifolds is the geodesic flow left-handed: the answer is that yes if the surface is a sphere with three cone points, and no otherwise.
dynamical system - geodesic flow - knot - periodic orbit - global section - linking number - fibered knot

MSC Codes :
37C10 - Vector fields, flows, ordinary differential equations
37C15 - Topological and differentiable equivalence, conjugacy, invariants, moduli, classification
37C27 - periodic orbits of vector fields and flows
57M25 - Knots and links in $S^3$

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 28/04/14
    Conference Date : 27/11/13
    Subseries : Research School
    arXiv category : Geometric Topology ; Dynamical Systems
    Mathematical Area(s) : Topology ; Dynamical Systems & ODE
    Format : QuickTime (.mov) Video Time : 01:05:24
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2013-11-27_Dehornoy.mp4

Information on the Event

Event Title : Jean-Morlet Chair - Doctoral school : Young mathematicians in dynamical systems / Chaire Jean-Morlet - Ecole doctorale : Paroles aux jeunes chercheurs en systèmes dynamiques
Event Organizers : Dal'Bo, Françoise ; Funar, Louis ; Hasselblatt, Boris ; Schapira, Barbara
Dates : 25/11/13 - 29/11/13
Event Year : 2013
Event URL : https://www.chairejeanmorlet.com/1097.html

Citation Data

DOI : 10.24350/CIRM.V.18479303
Cite this video as: Dehornoy, Pierre (2013). Which geodesic flows are left-handed?. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18479303
URI : http://dx.doi.org/10.24350/CIRM.V.18479303

Bibliography



Bookmarks Report an error