En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Lipschitz embedding of complex surfaces

Bookmarks Report an error
Multi angle
Authors : Neumann, Walter (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Pham and Teissier showed in the late 60's that any two plane curve germs with the same outer Lipschitz geometry have equivalent embeddings into $\mathbb{C}^2$. We consider to what extent the same holds in higher dimensions, giving examples of normal surface singularities which have the same topology and outer Lipschitz geometry but whose embeddings into $\mathbb{C}^3$ are topologically inequivalent. Joint work with Anne Pichon.

Keywords: bilipschitz - Lipschitz geometry - normal surface singularity - Zariski equisingularity - Lipschitz equisingularity

MSC Codes :
14B05 - Singularities
32S05 - Local singularities [See also 14J17]
32S25 - Surface and hypersurface singularities [See also 14J17]
57Mxx - Low-dimensional topology

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 16/03/15
    Conference Date : 03/03/15
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:16
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-03-03_Neumann.mp4

Information on the Event

Event Title : Geometry of singular spaces and maps / Géométrie des espaces et applications singuliers
Event Organizers : Brasselet, Jean-Paul ; Pichon, Anne
Dates : 02/03/15 - 06/03/15
Event Year : 2015
Event URL : https://conferences.cirm-math.fr/1478.html

Citation Data

DOI : 10.24350/CIRM.V.18720503
Cite this video as: Neumann, Walter (2015). Lipschitz embedding of complex surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18720503
URI : http://dx.doi.org/10.24350/CIRM.V.18720503

Bibliography



Bookmarks Report an error