En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Equisingularity of map germs from a surface to the plane

Bookmarks Report an error
Multi angle
Authors : Nuño-Ballesteros, Juan José (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $(X,0)$ be an ICIS of dimension $2$ and let $f :(X,0)\to\mathbb{C} ^2$ be a map germ with an isolated instability. Given $F : (\mathcal{X} , 0) \to (\mathbb{C} \times \mathbb{C}^2, 0)$ a stable unfolding of $f$, we look to the invariants related to the family $f_s$ and we find relations between them. We obtain necessary and sufficient conditions for $F$ to be Whitney equisingular. (Joint work with B. Orfice-Okamoto and J. N. Tomazella)

MSC Codes :
32S05 - Local singularities [See also 14J17]
32S30 - Deformations of singularities; vanishing cycles
58K40 - Classification; finite determinacy of map germs
58K15 - Topological properties of mappings

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 16/03/15
    Conference Date : 04/03/15
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:47
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-03-04_Ballesteros.mp4

Information on the Event

Event Title : Geometry of singular spaces and maps / Géométrie des espaces et applications singuliers
Event Organizers : Brasselet, Jean-Paul ; Pichon, Anne
Dates : 02/03/15 - 06/03/15
Event Year : 2015
Event URL : https://conferences.cirm-math.fr/1478.html

Citation Data

DOI : 10.24350/CIRM.V.18720003
Cite this video as: Nuño-Ballesteros, Juan José (2015). Equisingularity of map germs from a surface to the plane. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18720003
URI : http://dx.doi.org/10.24350/CIRM.V.18720003

Bibliography



Bookmarks Report an error