En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The Witt vector affine Grassmannian

Bookmarks Report an error
Multi angle
Authors : Scholze, Peter (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : (joint with Bhargav Bhatt) We prove that the space of $W(k)$-lattices in $W(k)[1/p]^n$, for a perfect field $k$ of characteristic $p$, has a natural structure as an ind-(perfect scheme). This improves on recent results of Zhu by constructing a natural ample line bundle on the space of such lattices.

MSC Codes :
14F30 - $p$-adic cohomology, crystalline cohomology
14G22 - Rigid analytic geometry
13F35 - Witt vectors and related rings

    Information on the Video

    Film maker : Vichi, Pascal ; Hennenfent, Guillaume
    Language : English
    Available date : 09/07/15
    Conference Date : 26/06/15
    Series : The Fields Medallists
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Number Theory
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:18
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-06-26_Scholze.mp4

Information on the Event

Event Title : Arithmetic geometry, representation theory and applications / Géométrie arithmétique, théorie des représentations et applications
Event Organizers : Abbes, Ahmed ; Breuil, Christophe ; Chenevier, Gaëtan ; Saito, Takeshi
Dates : 22/06/15 - 26/06/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1185.html

Citation Data

DOI : 10.24350/CIRM.V.18774403
Cite this video as: Scholze, Peter (2015). The Witt vector affine Grassmannian. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18774403
URI : http://dx.doi.org/10.24350/CIRM.V.18774403

Bibliography



Bookmarks Report an error