En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the algebraic hull of the Kontsevich-Zorich cocycle and applications to finiteness theorems

Bookmarks Report an error
Multi angle
Authors : Eskin, Alex (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We give a necessary and sufficient condition for the existence of infinitely many non-arithmetic Teichmuller curves in a stratum of abelian differentials. This is joint work with Simion Filip and Alex Wright.

MSC Codes :
14D07 - Variation of Hodge structures
30F30 - Differentials on Riemann surfaces
32G15 - Moduli of Riemann surfaces, Teichmüller theory
32G20 - Period matrices, variation of Hodge structure; degenerations [See also 14D05, 14D07, 14K30]
37D25 - Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)

    Information on the Video

    Film maker : Vichi, Pascal ; Hennenfent, Guillaume
    Language : English
    Available date : 20/07/15
    Conference Date : 06/07/15
    Subseries : Research talks
    arXiv category : Dynamical Systems ; Algebraic Geometry ; Geometric Topology
    Mathematical Area(s) : Dynamical Systems & ODE ; Topology ; Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:00:00
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-07-06_Eskin.mp4

Information on the Event

Event Title : Dynamics and geometry in the Teichmüller space / Dynamique et géométrie dans l'espace de Teichmüller
Event Organizers : Hubert, Pascal ; Lanneau, Erwan ; Zorich, Anton
Dates : 06/07/15 - 10/07/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1115.html

Citation Data

DOI : 10.24350/CIRM.V.18791003
Cite this video as: Eskin, Alex (2015). On the algebraic hull of the Kontsevich-Zorich cocycle and applications to finiteness theorems. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18791003
URI : http://dx.doi.org/10.24350/CIRM.V.18791003

Bibliography



Bookmarks Report an error