Authors : Seade, José (Author of the conference)
CIRM (Publisher )
Abstract :
Let $(V,p)$ be a complex isolated complete intersection singularity germ (an ICIS). It is well-known that its Milnor number $\mu$ can be expressed as the difference:
$$\mu = (-1)^n ({\rm Ind}_{GSV}(v;V) - {\rm Ind}_{rad}(v;V)) \;,$$
where $v$ is a continuous vector field on $V$ with an isolated singularity at $p$, the first of these indices is the GSV index and the latter is the Schwartz (or radial) index. This is independent of the choice of $v$.
In this talk we will review how this formula extends to compact varieties with non-isolated singularities. This depends on two different ways of extending the notion of Chern classes to singular varieties. On elf these are the Fulton-Johnson classes, whose 0-degree term coincides with the total GSV-Index, while the others are the Schwartz-McPherson classes, whose 0-degree term is the total radial index, and it coincides with the Euler characteristic. This yields to the well known notion of Milnor classes, which extend the Milnor number. We will discuss some geometric facts about the Milnor classes.
MSC Codes :
14B05
- Singularities
32S65
- Singularities of holomorphic vector fields and foliations
57R20
- Characteristic classes and numbers
Film maker : Hennenfent, Guillaume
Language : English
Available date : 11/03/15
Conference Date : 26/02/15
Subseries : Research talks
arXiv category : Algebraic Geometry ; Complex Variables
Mathematical Area(s) : Algebraic & Complex Geometry
Format : QuickTime (.mov)
Video Time : 00:51:45
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2015-02-26_Seade.mp4
|
Event Title : Local and global invariants of singularities / Invariants locaux et globaux des singularités Event Organizers : Dutertre, Nicolas ; Pichon, Anne Dates : 23/02/15 - 27/02/15
Event Year : 2015
Event URL : http://chairejeanmorlet-1stsemester2015....
DOI : 10.24350/CIRM.V.18707003
Cite this video as:
Seade, José (2015). Indices of vector fields on singular varieties and the Milnor number. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18707003
URI : http://dx.doi.org/10.24350/CIRM.V.18707003
|
Bibliography
- Aluffi, P. (1999). Chern classes for singular hypersurfaces. Transactions of the American Mathematical Society, 351(10), 3989-4026 - http://dx.doi.org/10.1090/s0002-9947-99-02256-4
- Brasselet, J.-P., & Schwartz, M.-H. (1981). Sur les classes de Chern d'un ensemble analytique complexe. Astérisque 82-83, 93-147 - https://www.zbmath.org/?q=an:0471.57006
- Brasselet, J.-P., Lehmann, D., Seade, J., & Suwa, T. (2002). Milnor classes of local complete intersections. Transactions of the American Mathematical Society, 354(4), 1351-1371 - http://dx.doi.org/10.1090/S0002-9947-01-02846-X
- Brasselet, J.-P., Seade, J., & Suwa, T. (2009). Vector fields on singular varieties. Berlin: Springer. (Lecture Notes in Mathematics, 1987) - http://dx.doi.org/10.1007/978-3-642-05205-7
- Callejas-Bedregal, R., Morgado, M.F.Z., & Seade, J. (2014). Lê cycles and Milnor classes. Inventiones Mathematicae, 197(2), 453-482; erratum ibid. 197(2), 483-489 - http://dx.doi.org/10.1007/s00222-013-0450-7
- Parusinski, A., & Pragacz, P. (2001). Characteristic classes of hypersurfaces and characteristic cycles. Journal of Algebraic Geometry, 10(1), 63-79 - https://www.zbmath.org/?q=an:1072.14505