https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Maximum size of a set of integers with no two adding up to a square
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Maximum size of a set of integers with no two adding up to a square

Bookmarks Report an error
Post-edited
Authors : Szemerédi, Endre (Author of the conference)
CIRM (Publisher )

Loading the player...
sets without squares in their difference set - historical background sequences with square free sumset modular version statement of the theorems on sets without squares in their sumset proofs

Abstract : Erdös and Sárközy asked the maximum size of a subset of the first $N$ integers with no two elements adding up to a perfect square. In this talk we prove that the tight answer is $\frac{11}{32}N$ for sufficiently large $N$. We are going to prove some stability results also. This is joint work with Simao Herdade and Ayman Khalfallah.

MSC Codes :
05A18 - Partitions of sets
11B75 - Combinatorial number theory

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/10/15
    Conference Date : 10/09/15
    Subseries : Research talks
    arXiv category : Combinatorics
    Mathematical Area(s) : Combinatorics ; Number Theory
    Format : QuickTime (.mov) Video Time : 00:36:25
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-09-10_Szemeredi.mp4

Information on the Event

Event Title : Additive combinatorics in Marseille / Combinatoire additive à Marseille
Event Organizers : Hennecart, François ; Plagne, Alain ; Szemerédi, Endre
Dates : 07/09/15 - 11/09/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1107.html

Citation Data

DOI : 10.24350/CIRM.V.18827703
Cite this video as: Szemerédi, Endre (2015). Maximum size of a set of integers with no two adding up to a square. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18827703
URI : http://dx.doi.org/10.24350/CIRM.V.18827703

Bibliography



Bookmarks Report an error