En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Invariant random subgroups of acylindrically hyperbolic groups

Bookmarks Report an error
Multi angle
Authors : Osin, Denis V. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed.

MSC Codes :
20F65 - Geometric group theory
20F67 - Hyperbolic groups and nonpositively curved groups

    Information on the Video

    Film maker : Vichi, Pascal
    Language : English
    Available date : 13/10/15
    Conference Date : 17/09/15
    Subseries : Research talks
    arXiv category : Group Theory ; Dynamical Systems
    Mathematical Area(s) : Algebra ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:09
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-09-17_Osin.mp4

Information on the Event

Event Title : GAGTA-9: Geometric, Asymptotic and Combinatorial Group Theory and Applications / GAGTA-9 : Théorie géométrique, asymptotique et combinatoire des groupes et applications
Event Organizers : Coulbois, Thierry ; Weil, Pascal
Dates : 14/09/15 - 18/09/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1212.html

Citation Data

DOI : 10.24350/CIRM.V.18837103
Cite this video as: Osin, Denis V. (2015). Invariant random subgroups of acylindrically hyperbolic groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18837103
URI : http://dx.doi.org/10.24350/CIRM.V.18837103

Bibliography



Bookmarks Report an error