En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the Navier-Stokes equations on surfaces

Bookmarks Report an error
Multi angle
Authors : Simonett, Gieri (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will consider the motion of an incompressible viscous fluid on compact surfaces without boundary. Local in time well-posedness is established in the framework of $L_{p}$-$L_{q}$ maximal regularity for initial values in critical spaces. It will be shown that the set of equilibria consists exactly of the Killing vector fields. Each equilibrium is stable and any solution starting close to an equilibrium converges at an exponential rate to a (possibly different) equilibrium. In case the surface is two-dimensional, it will be shown that any solution with divergence free initial value in $L_{2}$ exists globally and converges to an equilibrium.

Keywords : surface Navier-Stokes equations; surface Stokes operator; critical spaces; Killing vector fields; Korn's inequality; global existence

MSC Codes :
35B40 - Asymptotic behavior of solutions of PDE
35Q30 - Stokes and Navier-Stokes equations
35Q35 - PDEs in connection with fluid mechanics

Additional resources :
https://www.cirm-math.fr/RepOrga/2576/Slides/simonett.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 13/06/2022
    Conference Date : 09/05/2022
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:41:52
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05-09_Simonett.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2022 - Conference: Nonlinear PDEs in Fluid Dynamics / Chaire Jean-Morlet 2022 - Conférence : EDP non-linéaires en dynamique des fluides
Event Organizers : Danchin, Raphaël ; Hieber, Matthias ; Monniaux, Sylvie ; Perrin, Charlotte
Dates : 09/05/2022 - 13/05/2022
Event Year : 2022
Event URL : https://www.chairejeanmorlet.com/2576.html

Citation Data

DOI : 10.24350/CIRM.V.19917103
Cite this video as: Simonett, Gieri (2022). On the Navier-Stokes equations on surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19917103
URI : http://dx.doi.org/10.24350/CIRM.V.19917103

See Also

Bibliography

  • SIMONETT, Gieri et WILKE, Mathias. $ H^\infty $-calculus for the surface Stokes operator and applications. arXiv preprint arXiv:2111.12586, 2021. - https://arxiv.org/abs/2111.12586

  • PRÜSS, Jan, SIMONETT, Gieri, et WILKE, Mathias. On the Navier–Stokes equations on surfaces. Journal of Evolution Equations, 2021, vol. 21, no 3, p. 3153-3179. - http://dx.doi.org/10.1007/s00028-020-00648-0

  • PRÜSS, Jan, SIMONETT, Gieri, et WILKE, Mathias. Critical spaces for quasilinear parabolic evolution equations and applications. Journal of Differential Equations, 2018, vol. 264, no 3, p. 2028-2074. - https://doi.org/10.1016/j.jde.2017.10.010

  • PRÜSS, Jan et SIMONETT, Gieri. Moving interfaces and quasilinear parabolic evolution equations. Basel : Birkhäuser, 2016. - http://dx.doi.org/10.1007/978-3-319-27698-4



Imagette Video

Bookmarks Report an error