En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Mixing properties of non-stationary INGARCH(1,1) processes

Bookmarks Report an error
Multi angle
Authors : Leucht, Anne (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk, I will present mixing properties for a broad class of Poisson count time series satisfying a certain contraction condition. Using specific coupling techniques, we obtain absolute regularity at a geometric rate not only for stationary Poisson-GARCH processes but also for models with an explosive trend. Easily verifiable sufficient conditions for absolute regularity can be deduced from our general results for a variety of models including classical (log-)linear models.

Keywords : Absolute regularity; coupling; INGARCH; mixing

MSC Codes :
60G07 - General theory of processes
60G10 - Stationary processes
60J05 - Markov processes with discrete parameter

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 10/10/2022
    Conference Date : 27/09/2022
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:31:40
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-09-27_Leucht.mp4

Information on the Event

Event Title : Adaptive and High-Dimensional Spatio-Temporal Methods for Forecasting / Méthodes spatio-temporelles adaptatives et en grande dimension pour la prédiction
Event Organizers : Bardet, Jean-Marc ; Naveau, Philippe ; Subba Rao, Suhasini ; Veraart, Almut ; von Sachs, Rainer
Dates : 26/09/2022 - 30/09/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2619.html

Citation Data

DOI : 10.24350/CIRM.V.19961303
Cite this video as: Leucht, Anne (2022). Mixing properties of non-stationary INGARCH(1,1) processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19961303
URI : http://dx.doi.org/10.24350/CIRM.V.19961303

See Also

Bibliography

  • DOUKHAN, Paul, LEUCHT, Anne, et NEUMANN, Michael H. Mixing properties of non-stationary INGARCH (1, 1) processes. Bernoulli, 2022, vol. 28, no 1, p. 663-688. - http://dx.doi.org/10.3150/21-BEJ1362



Imagette Video

Bookmarks Report an error