En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Real structures on hyper-Kähler manifolds

Bookmarks Report an error
Multi angle
Authors : ... (Author of the conference)
... (Publisher )

Loading the player...

Abstract : Great achievements have been made towards the study of realstructures on K3 surfaces. I will report on an attempt to generalize some of these results to higher dimensional analogs of K3 surfaces, namely, the so-called compact hyper-Kähler manifolds. The emphasis will be on finiteness properties of their (Klein) automorphism groups. In particular, we show that there are only finitely many real structures on a given compact hyper-Kähler manifold. It is based on a joint work with Andrea Cattaneo.

Keywords : real structures; hyper-Kähler manifolds; automorphism group

MSC Codes :
14J50 - Automorphisms of surfaces and higher-dimensional varieties
14P99 - None of the above but in this section
53C26 - Hyper-Kähler and quaternionic Kähler geometry, “special” geometry

    Information on the Video

    Language : English
    Available date : 25/11/2022
    Conference Date : 31/10/2022
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:50
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-10-31_Fu.mp4

Information on the Event

Event Title : Real Aspects of Geometry / Aspects réels de la géométrie
Dates : 31/10/2022 - 04/11/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2607.html

Citation Data

DOI : 10.24350/CIRM.V.19979503
Cite this video as: (2022). Real structures on hyper-Kähler manifolds. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19979503
URI : http://dx.doi.org/10.24350/CIRM.V.19979503

See Also

Bibliography



Imagette Video

Bookmarks Report an error