En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Mixing and rates of mixing for infinite measure flows

Bookmarks Report an error
Multi angle
Authors : Melbourne, Ian (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We obtain results on mixing and rates of mixing for infinite measure semiflows and flows. The results on rates of mixing rely on operator renewal theory and a Dolgopyat-type estimate. The results on mixing hold more generally and are based on a deterministic (ie non iid) version of Erickson's continuous time strong renewal theorem.

MSC Codes :
37A25 - Ergodicity, mixing, rates of mixing
37A50 - Relations with probability theory and stochastic processes
37D25 - Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37A40 - Nonsingular (and infinite-measure preserving) transformations

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 03/03/17
    Conference Date : 22/02/17
    Subseries : Research talks
    arXiv category : Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:15
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-02-22_Melbourne.mp4

Information on the Event

Event Title : Non uniformly hyperbolic dynamical systems. Coupling and renewal theory / Systèmes dynamiques non uniformement et partiellement hyperboliques. Couplage, renouvellement
Event Organizers : Troubetzkoy, Serge ; Vaienti, Sandro
Dates : 20/02/17 - 24/02/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1714.html

Citation Data

DOI : 10.24350/CIRM.V.19129003
Cite this video as: Melbourne, Ian (2017). Mixing and rates of mixing for infinite measure flows. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19129003
URI : http://dx.doi.org/10.24350/CIRM.V.19129003

See Also

Bibliography



Bookmarks Report an error