https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Detection theory and novelty filters
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Detection theory and novelty filters

Bookmarks Report an error
Post-edited
Authors : Morel, Jean-Michel (Author of the conference)
CIRM (Publisher )

Loading the player...
detection principles variational method sparsity of patches number of tests building the image model number of false alarms example of detections in textures examples of multiscale detections questions of the audience

Abstract : In this presentation based on on-line demonstrations of algorithms and on the examination of several practical examples, I will reflect on the problem of modeling a detection task in images. I will place myself in the (very frequent) case where the detection task can not be formulated in a Bayesian framework or, rather equivalently that can not be solved by simultaneous learning of the model of the object and that of the background. (In the case where there are plenty of examples of the background and of the object to be detected, the neural networks provide a practical answer, but without explanatory power). Nevertheless for the detection without "learning", I will show that we can not avoid building a background model, or possibly learn it. But this will not require many examples.

Joint works with Axel Davy, Tristan Dagobert, Agnes Desolneux, Thibaud Ehret.

MSC Codes :
65D18 - Computer graphics, image analysis, and computational geometry
68T05 - Learning and adaptive systems
68U10 - Image processing (computing aspects)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 25/05/17
    Conference Date : 17/05/17
    Subseries : Research talks
    arXiv category : Computer Science ; Numerical Analysis
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; Computer Science
    Format : MP4 (.mp4) - HD
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-05-17_Morel.mp4

Information on the Event

Event Title : 19th workshop on stochastic geometry, stereology and image analysis / 19ème conférence en géométrie stochastique, stéréologie et analyse d'images
Event Organizers : Calka, Pierre ; Coeurjolly, Jean-François ; Coupier, David ; Estrade, Anne ; Molchanov, Ilya
Dates : 15/05/17 - 19/05/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1513.html

Citation Data

DOI : 10.24350/CIRM.V.19166203
Cite this video as: Morel, Jean-Michel (2017). Detection theory and novelty filters. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19166203
URI : http://dx.doi.org/10.24350/CIRM.V.19166203

See Also

Bibliography

  • Boracchi, G., Carrera, D., & Wohlberg, B. (2014). Novelty detection in images by sparse representations. IEEE Symposium on Intelligent Embedded Systems, Orlando 2014, 47-54 - http://dx.doi.org/10.1109/INTELES.2014.7008985

  • Carrera, D., Boracchi, G., Foi, A., & Wohlberg, B. (2016). Scale-invariant anomaly detection with multiscale group-sparse models. IEEE International Conference on Image Processing, Phoenix 2016, 3892-3896 - http://dx.doi.org/10.1109/ICIP.2016.7533089

  • Delsolneux, A., Moisan, L., & Morel, J.-M. (2008). From Gestalt theory to image analysis. A probabilistic approach. New York: Springer - http://dx.doi.org/10.1007/978-0-387-74378-3

  • Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct?. IEEE Conference on Computer Vision and Pattern Recognition, Portland 2013, 1139-1146 - http://dx.doi.org/10.1109/CVPR.2013.151

  • Mishne, G., & Cohen, I. (2014). Multiscale anomaly detection using diffusion maps and saliency score. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence 2014, 2823-2827 - http://dx.doi.org/10.1109/ICASSP.2014.6854115

  • Raad, L., Desolneux, A., Morel, J.-M. (2015) Conditional Gaussian Models for Texture Synthesis. In J.-F. Aujol, M. Nikolova, & N. Papadakis (Eds.), Scale space and variational methods in computer vision (pp. 474-485). Cham: Springer - http://dx.doi.org/10.1007/978-3-319-18461-6_38



Bookmarks Report an error