https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Spectral theory and semi-classical analysis for the complex Schrödinger operator
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Spectral theory and semi-classical analysis for the complex Schrödinger operator

Bookmarks Report an error
Post-edited
Authors : Helffer, Bernard (Author of the conference)
CIRM (Publisher )

Loading the player...
complex Schrödinger operator nuclear magnetic resonance complex Airy operator semi-group of operators pseudo-spectrum Schatten class completness of eigenfunction Bloch-Torrey operator / semi-classical analysis quasi-modes questions of the audience

Abstract : We consider the operator $\mathcal{A}_h = -h^2 \Delta + iV$ in the semi-classical limit $h \to 0$, where $V$ is a smooth real potential with no critical points. We obtain both the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for the Dirichlet realization of $\mathcal{A}_h$ by removing significant limitations that were formerly imposed on $V$. In addition, we apply our techniques to the more general Robin boundary condition and to a transmission problem which is of significant interest in physical applications.

MSC Codes :
35J10 - Schrödinger operator
35P10 - Completeness of eigenfunctions, eigenfunction expansions for PD operators
35P15 - Estimation of eigenvalues and upper and lower bounds for PD operators
47A10 - Spectrum and resolvent of linear operators
82D55 - Superconductors
81Q12 - Non-selfadjoint operator theory in quantum theory

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/17
    Conference Date : 07/06/17
    Subseries : Research talks
    arXiv category : Spectral Theory ; Mathematical Physics
    Mathematical Area(s) : PDE ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:04
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-06-07_Helffer.mp4

Information on the Event

Event Title : Mathematical aspects of physics with non-self-adjoint operators / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints
Event Organizers : Krejcirik, David ; Siegl, Petr
Dates : 05/06/17 - 09/06/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1596.html

Citation Data

DOI : 10.24350/CIRM.V.19180803
Cite this video as: Helffer, Bernard (2017). Spectral theory and semi-classical analysis for the complex Schrödinger operator. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19180803
URI : http://dx.doi.org/10.24350/CIRM.V.19180803

See Also

Bibliography

  • Almog, Y., Grebenkov, D., & Helffer, B. (2017). On a Schrödinger operator with a purely imaginary potential in the semiclassical limit. - https://arxiv.org/abs/1703.07733



Bookmarks Report an error