En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Frozen and near-critical percolation

Bookmarks Report an error
Multi angle
Authors : van den Berg, Jacob (Author of the conference)
... (Publisher )

Loading the player...

Abstract : Motivated by solgel transitions, David Aldous (2000) introduced and analysed a fascinating dynamic percolation model on a tree where clusters stop growing ('freeze') as soon as they become infinite.
In this talk I will discuss recent (and ongoing) work, with Demeter Kiss and Pierre Nolin, on processes of similar flavour on planar lattices. We focus on the problem whether or not the giant (i.e. 'frozen') clusters occupy a negligible fraction of space. Accurate results for near-critical percolation play an important role in the solution of this problem.
I will also present a version of the model which can be interpreted as a sensor/communication network.

MSC Codes :
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
82B43 - Percolation (equilibrium statistical mechanics)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/10/2017
    Conference Date : 25/10/2017
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:16
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-10-25_Van_Den_Berg.mp4

Information on the Event

Event Title : Dynamics on random graphs and random maps / Dynamiques sur graphes et cartes aléatoires
Event Organizers : Ménard, Laurent ; Nolin, Pierre ; Schapira, Bruno ; Singh, Arvind
Dates : 23/10/2017 - 27/10/2017
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1672.html

Citation Data

DOI : 10.24350/CIRM.V.19230203
Cite this video as: van den Berg, Jacob (2017). Frozen and near-critical percolation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19230203
URI : http://dx.doi.org/10.24350/CIRM.V.19230203

See Also

Bibliography

  • van den Berg, J., & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. The Annals of Applied Probability, 27(1), 91-108 - http://dx.doi.org/10.1214/16-AAP1198



Bookmarks Report an error