En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The large scale geometry of the Higgs bundle moduli space

Bookmarks Report an error
Multi angle
Authors : Swoboda, Jan (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a Higgs field $\Phi$ on $\Sigma$. I will show that on the regular part of the Hitchin fibration ($A$, $\Phi$) $\rightarrow$ det $\Phi$ this metric is well-approximated by the semiflat metric $G_{sf}$ coming from the completely integrable system on $\mathcal{M}$. This also reveals the asymptotically conic structure of $G_{L^2}$, with (generic) fibres of the above fibration being asymptotically flat tori. This result confirms some aspects of a more general conjectural picture made by Gaiotto, Moore and Neitzke. Its proof is based on a detailed understanding of the ends structure of $\mathcal{M}$. The analytic methods used there in addition yield a complete asymptotic expansion of the difference $G_{L^2} − G_{sf}$ between the two metrics.

MSC Codes :
14D20 - Algebraic moduli problems, moduli of vector bundles
14H60 - Vector bundles on curves and their moduli
53C07 - Special connections and metrics on vector bundles (Hermite-Einstein-Yang-Mills)
53C26 - Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
53D18 - Generalized geometries (à la Hitchin)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 21/06/2018
    Conference Date : 20/06/2018
    Subseries : Research talks
    arXiv category : Differential Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:24
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-06-20_Swoboda.mp4

Information on the Event

Event Title : Gauge theory and complex geometry / ​Théorie de jauge et géométrie complexe
Event Organizers : Bradlow, Steven B. ; Schmidt, Alexander ; Teleman, Andrei
Dates : 18/06/2018 - 22/06/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1747.html

Citation Data

DOI : 10.24350/CIRM.V.19417403
Cite this video as: Swoboda, Jan (2018). The large scale geometry of the Higgs bundle moduli space. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19417403
URI : http://dx.doi.org/10.24350/CIRM.V.19417403

See Also

Bibliography



Bookmarks Report an error