En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Generalizations of Crapo's Beta Invariant

Bookmarks Report an error
Multi angle
Authors : Gordon, Gary (Author of the conference) ; McMahon, Liz (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid $M$, the invariant $\beta(M)$ is the non-negative integer that is the coefficient of the $x$ term of the Tutte polynomial. Crapo proved that $\beta(M)>0$ if and only if $M$ is connected and $M$ is not a loop, and Brylawski proved that $M$ is the matroid of a series-parallel network if and only if $M$ is a co-loop or $\beta(M)=1.$ In this talk, we present several generalizations of the beta invariant to combinatorial structures that are not matroids. We concentrate on posets, chordal graphs, and finite subsets of Euclidean space. In each case, our definition of $\beta$ measures the number of "interior'' elements.

Keywords : Crapo's beta invariant; matroid; Tutte polynomial; co-loop; chordal graphs; posets; Euclidean space

MSC Codes :
05B35 - Matroids, geometric lattices

Information on the Event

Event Title : Combinatorial geometries: matroids, oriented matroids and applications / Géométries combinatoires : matroïdes, matroïdes orientés et applications
Event Organizers : Gioan, Emeric ; Ramírez Alfonsín, Jorge Luis ; Recski, Andras
Dates : 24/09/2018 - 28/09/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1859.html

Citation Data

DOI : 10.24350/CIRM.V.19450703
Cite this video as: Gordon, Gary ;McMahon, Liz (2018). Generalizations of Crapo's Beta Invariant. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19450703
URI : http://dx.doi.org/10.24350/CIRM.V.19450703

See Also

Bibliography



Bookmarks Report an error