En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Virtual element approximation of magnetostatic

Bookmarks Report an error
Multi angle
Authors : Marini, Donatella (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We present a lowest order Serendipity Virtual Element method, and show its use for the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant) tangential component of the magnetic eld H on each edge, and the vertex values of the Lagrange multiplier p (used to enforce the solenoidality of the magnetic induction B = µH). In this respect the method can be seen as the natural generalization of the lowest order Edge Finite Element Method (the so-called ”first kind N´ed´elec” elements) to polyhedra of almost arbitrary shape, and as we show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with respect to distortions. Hints on a whole family of elements will also be given.

MSC Codes :
65N12 - Stability and convergence of numerical methods (BVP of PDE)
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 28/05/2019
    Conference Date : 29/04/2019
    Subseries : Research talks
    arXiv category : Numerical Analysis
    Mathematical Area(s) : PDE ; Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Video Time : 00:40:14
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-29_Marini.mp4

Information on the Event

Event Title : POEMs - POlytopal Element Methods in Mathematics and Engineering
Event Organizers : Antonietti, Paola ; Beirão da Veiga, Lourenço ; Di Pietro, Daniele ; Droniou, Jérôme ; Krell, Stella
Dates : 29/04/2019 - 03/05/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1954.html

Citation Data

DOI : 10.24350/CIRM.V.19528503
Cite this video as: Marini, Donatella (2019). Virtual element approximation of magnetostatic. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19528503
URI : http://dx.doi.org/10.24350/CIRM.V.19528503

See Also

Bibliography

  • DA VEIGA, L. Beirao, BREZZI, F., DASSI, F., et al. Virtual element approximation of 2d magnetostatic problems. Computer Methods in Applied Mechanics and Engineering, 2017, vol. 327, p. 173-195. - https://doi.org/10.1016/j.cma.2017.08.013

  • KIKUCHI, Fumio. Mixed formulations for finite element analysis of magnetostatic and electrostatic problems. Japan Journal of Applied Mathematics, 1989, vol. 6, no 2, p. 209. - DOI https://doi.org/10.1007/BF03167879ISTEX

  • BEIRÃO DA VEIGA, L., BREZZI, F., DASSI, F., et al. A family of three-dimensional virtual elements with applications to magnetostatic. arXiv preprint arXiv:1804.10497, 2018. - https://arxiv.org/abs/1804.10497



Bookmarks Report an error