https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Sampling algorithms and phase transitions
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Sampling algorithms and phase transitions

Bookmarks Report an error
Post-edited
Authors : ...
CIRM (Publisher )

Loading the player...
monotonic surfaces Markov chains integer partitions Boltzmann sampling the 6-vertex model slow mixing

Abstract : Markov chain Monte Carlo methods have become ubiquitous across science and engineering to model dynamics and explore large combinatorial sets. Over the last 20 years there have been tremendous advances in the design and analysis of efficient sampling algorithms for this purpose. One of the striking discoveries has been the realization that many natural Markov chains undergo phase transitions, whereby they abruptly change from being efficient to inefficient as some parameter of the system is modified. Generating functions can offer an alternative approach to sampling and they play a role in showing when certain Markov chains are efficient or not. We will explore the interplay between Markov chains, generating functions, and phase transitions for a variety of combinatorial problems, including graded posets, Boltzmann sampling, and 3-colorings on $Z^{2}$.

Keywords : Markov chain; phase transition; integer partitions; 3-colorings

MSC Codes :
60C05 - Combinatorial probability
60J20 - Applications of Markov chains and discrete-time Markov processes on general state spaces
68R05 - Combinatorics in connection with computer science

Additional resources :
https://www.cirm-math.fr/RepOrga/1940/Slides/Randall-slides.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/07/2019
    Conference Date : 24/06/2019
    Subseries : Research talks
    arXiv category : Computer Science ; Combinatorics ; Mathematical Physics ; Probability
    Mathematical Area(s) : Computer Science ; Combinatorics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:10:29
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-06-24_Randall.mp4

Information on the Event

Event Title : AofA: Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms / AofA: méthodes probabilistes, combinatoires et asymptotiques pour l analyse d algorithmes
Event Organizers : Bassino, Frédérique ; Martínez, Conrado ; Salvy, Bruno
Dates : 24/06/2019 - 28/06/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1940.html

Citation Data

DOI : 10.24350/CIRM.V.19540103
Cite this video as: (2019). Sampling algorithms and phase transitions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19540103
URI : http://dx.doi.org/10.24350/CIRM.V.19540103

See Also

Bibliography

  • LUBY, Michael, RANDALL, Dana, et SINCLAIR, Alistair. Markov chain algorithms for planar lattice structures. SIAM journal on Computing, 2001, vol. 31, no 1, p. 167-192. - https://doi.org/10.1137/S0097539799360355

  • BHAKTA, Prateek, COUSINS, Ben, FAHRBACH, Matthew, et al. Approximately sampling elements with fixed rank in graded posets. In : Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2017. p. 1828-1838. - https://doi.org/10.1137/1.9781611974782.119

  • FAHRBACH, Matthew et RANDALL, Dana. Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ferroelectric and Antiferroelectric Phases. arXiv preprint arXiv:1904.01495, 2019. - https://arxiv.org/abs/1904.01495



Bookmarks Report an error