Authors : Dobrinen, Natasha (Author of the conference)
CIRM (Publisher )
Abstract :
The Galvin-Prikry theorem states that Borel partitions of the Baire space are Ramsey. Thus, given any Borel subset $\chi$ of the Baire space and an infinite set $N$, there is an infinite subset $M$ of $N$ such that $\left [M \right ]^{\omega }$ is either contained in $\chi$ or disjoint from $\chi$ . In their 2005 paper, Kechris, Pestov and Todorcevic point out the dearth of similar results for homogeneous relational structures. We have attained such a result for Borel colorings of copies of the Rado graph. We build a topological space of copies of the Rado graph, forming a subspace of the Baire space. Using techniques developed for our work on the big Ramsey degrees of the Henson graphs, we prove that Borel partitions of this space of Rado graphs are Ramsey.
Keywords : Rado graph; Ramsey theory; forcing
MSC Codes :
03C15
- Denumerable structures
03E75
- Applications
05D10
- Ramsey theory
Additional resources :
https://www.cirm-math.fr/RepOrga/2052/Slides/Dobrinen_Luminy_Sept2019.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 14/10/2019
Conference Date : 25/09/2019
Subseries : Research talks
arXiv category : Combinatorics ; Logic
Mathematical Area(s) : Logic and Foundations ; Combinatorics
Format : MP4 (.mp4) - HD
Video Time : 00:51:19
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2019-09-25_Dobrinen.mp4
|
Event Title : 15th International Luminy Workshop in Set Theory / XVe Atelier international de théorie des ensembles Event Organizers : Dzamonja, Mirna ; Velickovic, Boban Dates : 23/09/2019 - 27/09/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2052.html
DOI : 10.24350/CIRM.V.19563603
Cite this video as:
Dobrinen, Natasha (2019). Borel sets of Rado graphs are Ramsey. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19563603
URI : http://dx.doi.org/10.24350/CIRM.V.19563603
|
See Also
Bibliography
- DOBRINEN, Natasha. Borel sets of Rado graphs and Ramsey's Theorem. arXiv preprint arXiv:1904.00266, 2019. - https://arxiv.org/abs/1904.00266
- DOBRINEN, Natasha. The Ramsey theory of the universal homogeneous triangle-free graph. arXiv preprint arXiv:1704.00220, 2017. - https://arxiv.org/abs/1704.00220
- DOBRINEN, Natasha. The Ramsey Theory of Henson graphs. arXiv preprint arXiv:1901.06660, 2019. - https://arxiv.org/abs/1901.06660
- ELLENTUCK, Erik. A new proof that analytic sets are Ramsey. The Journal of Symbolic Logic, 1974, vol. 39, no 1, p. 163-165. - https://doi.org/10.2307/2272356
- GALVIN, Fred et PRIKRY, Karel. Borel sets and Ramsey's theorem 1. The Journal of Symbolic Logic, 1973, vol. 38, no 2, p. 193-198. - https://doi.org/10.2307/2272055
- HALPERN, James D. et LÄUCHLI, Hans. A partition theorem. Transactions of the American Mathematical society, 1966, vol. 124, no 2, p. 360-367. - https://doi.org/10.1090/s0002-9947-1966-0200172-2
- LAFLAMME*, Claude, SAUER, Norbert W., et VUKSANOVIC, Vojkan. Canonical partitions of universal structures. Combinatorica, 2006, vol. 26, no 2, p. 183-205. - https://doi.org/10.1007/s00493-006-0013-2
- KECHRIS, Alexander S., PESTOV, Vladimir G., et TODORCEVIC, Stevo. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric and Functional Analysis, 2005, vol. 15, no 1, p. 106-189. - https://doi.org/10.1007/s00039-005-0503-1
- MILLIKEN, Keith R. A Ramsey theorem for trees. Journal of Combinatorial Theory, Series A, 1979, vol. 26, no 3, p. 215-237. - https://doi.org/10.1016/0097-3165(79)90101-8