En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Borel sets of Rado graphs are Ramsey

Bookmarks Report an error
Multi angle
Authors : Dobrinen, Natasha (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The Galvin-Prikry theorem states that Borel partitions of the Baire space are Ramsey. Thus, given any Borel subset $\chi$ of the Baire space and an infinite set $N$, there is an infinite subset $M$ of $N$ such that $\left [M \right ]^{\omega }$ is either contained in $\chi$ or disjoint from $\chi$ . In their 2005 paper, Kechris, Pestov and Todorcevic point out the dearth of similar results for homogeneous relational structures. We have attained such a result for Borel colorings of copies of the Rado graph. We build a topological space of copies of the Rado graph, forming a subspace of the Baire space. Using techniques developed for our work on the big Ramsey degrees of the Henson graphs, we prove that Borel partitions of this space of Rado graphs are Ramsey.

Keywords : Rado graph; Ramsey theory; forcing

MSC Codes :
03C15 - Denumerable structures
03E75 - Applications
05D10 - Ramsey theory

Additional resources :
https://www.cirm-math.fr/RepOrga/2052/Slides/Dobrinen_Luminy_Sept2019.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 14/10/2019
    Conference Date : 25/09/2019
    Subseries : Research talks
    arXiv category : Combinatorics ; Logic
    Mathematical Area(s) : Logic and Foundations ; Combinatorics
    Format : MP4 (.mp4) - HD
    Video Time : 00:51:19
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-09-25_Dobrinen.mp4

Information on the Event

Event Title : 15th International Luminy Workshop in Set Theory / XVe Atelier international de théorie des ensembles
Event Organizers : Dzamonja, Mirna ; Velickovic, Boban
Dates : 23/09/2019 - 27/09/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2052.html

Citation Data

DOI : 10.24350/CIRM.V.19563603
Cite this video as: Dobrinen, Natasha (2019). Borel sets of Rado graphs are Ramsey. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19563603
URI : http://dx.doi.org/10.24350/CIRM.V.19563603

See Also

Bibliography



Bookmarks Report an error