En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

$L^p$-theory for Schrödinger systems

Bookmarks Report an error
Multi angle
Authors : Rhandi, Abdelaziz (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk we study for $p\in \left ( 1,\infty \right )$ the $L^{p}$-realization of the vector-valued Schrödinger operator $\mathcal{L}u:= div\left ( Q\triangledown u \right )+Vu$. Using a noncommutative version of the Dore–Venni theorem due to Monniaux and Prüss, and a perturbation theorem by Okazawa, we prove that $L^{p}$, the $L^{p}$-realization of $\mathcal{L}$, defined on the intersection of the natural domains of the differential and multiplication operators which form $\mathcal{L}$, generates a strongly continuous contraction semigroup on $L^{p}\left ( \mathbb{R}^{d} ;\mathbb{C}^{m}\right )$. We also study additional properties of the semigroup such as positivity, ultracontractivity, Gaussian estimates and compactness of the resolvent. We end the talk by giving some generalizations obtained recently and several examples.

Keywords : system of PDE; Schrödinger operator; strongly continuous semigroup

MSC Codes :
35J15 - General theory of second-order, elliptic equations
47D06 - One-parameter semigroups and linear evolution equations
47D08 - Schrödinger and Feynman-Kac semigroups
35J47 - Second-order elliptic systems

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/11/2019
    Conference Date : 28/10/2019
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:28:42
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-10-31_Rhandi.mp4

Information on the Event

Event Title : Evolution Equations: Applied and Abstract Perspectives / Equations d'évolution: perspectives appliquées et abstraites
Event Organizers : Disser, Karoline ; Haller-Dintelmann, Robert ; Kyed, Mads ; Saal, Jürgen
Dates : 28/10/2019 - 01/11/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2071.html

Citation Data

DOI : 10.24350/CIRM.V.19576003
Cite this video as: Rhandi, Abdelaziz (2019). $L^p$-theory for Schrödinger systems . CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19576003
URI : http://dx.doi.org/10.24350/CIRM.V.19576003

See Also

Bibliography

  • KUNZE, Markus, LORENZI, Luca, MAICHINE, Abdallah, et al. ${L^ p} $-theory for Schr\" odinger systems. arXiv preprint arXiv:1705.03333, 2017. - https://arxiv.org/abs/1705.03333

  • HIEBER, Matthias, LORENZI, Luca, PRÜSS, Jan, et al. Global properties of generalized Ornstein–Uhlenbeck operators on Lp (RN, RN) with more than linearly growing coefficients. Journal of Mathematical Analysis and Applications, 2009, vol. 350, no 1, p. 100-121. - http://dx.doi.org/10.1016/j.jmaa.2008.09.011

  • KUNZE, M., LORENZI, L., MAICHINE, A., et al. Lp-theory for Schrödinger systems, Math. Nachr, vol. 292 n°8 p1763-1776 - https://doi.org/10.1002/mana.201800206

  • KUNZE, Markus, MAICHINE, Abdallah, et RHANDI, Abdelaziz. Vector-valued Schr\" odinger operators on $ L^ p $-spaces. arXiv preprint arXiv:1802.09771, 2018. - https://arxiv.org/pdf/1802.09771.pdf

  • MAICHINE, Abdallah et RHANDI, Abdelaziz. On a polynomial scalar perturbation of a Schrödinger system in Lp-spaces. Journal of Mathematical Analysis and Applications, 2018, vol. 466, no 1, p. 655-675. - https://arxiv.org/pdf/1802.02772.pdf



Bookmarks Report an error