Authors : Elduque, Alberto (Author of the conference)
CIRM (Publisher )
Abstract :
Duality in projective geometry is a well-known phenomenon in any dimension. On the other hand, geometric triality deals with points and spaces of two different kinds in a sevendimensional projective space. It goes back to Study (1913) and Cartan (1925), and was soon realizedthat this phenomenon is tightly related to the algebra of octonions, and the order 3 outer automorphisms of the spin group in dimension 8.
Tits observed, in 1959, the existence of two different types of geometric triality. One of them is related to the octonions, but the other one is better explained in terms of a class of nonunital composition algebras discovered by the physicist Okubo (1978) inside 3x3-matrices, and which has led to the definition of the so called symmetric composition algebras.
This talk will review the history, classification, and their connections with the phenomenon of triality, of the symmetric composition algebras.
Keywords : Triality; composition algebra; symmetric; exceptional Lia algebras
MSC Codes :
17A75
- Composition algebras
17B60
- Lie (super)algebras associated with other structures (associative, Jordan, etc.)
20G15
- Linear algebraic groups over arbitrary fields
Film maker : Hennenfent, Guillaume
Language : English
Available date : 06/12/2019
Conference Date : 12/11/2019
Subseries : Research talks
arXiv category : Group Theory ; Rings and Algebras
Mathematical Area(s) : Algebra
Format : MP4 (.mp4) - HD
Video Time : 00:39:36
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2019-011-12_Elduque.mp4
|
Event Title : Workshop on Differential Geometry and Nonassociative Algebras / Colloque en géométrie différentielle et algèbres non associatives Event Organizers : Albuquerque, Helena ; Benayadi, Saïd ; Boucetta, Mohamed ; Makhlouf, Abdenacer Dates : 12/11/2019 - 16/11/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/2076.html
DOI : 10.24350/CIRM.V.19577803
Cite this video as:
Elduque, Alberto (2019). Triality. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19577803
URI : http://dx.doi.org/10.24350/CIRM.V.19577803
|
See Also
Bibliography
- CARTAN, Élie. Le principe de dualité et la théorie des groupes simples et semi-simples. Bull. des Sci. Math., 1925, vol. 49, p. 361-374. - https://gallica.bnf.fr/ark:/12148/bpt6k486276p/f141.image.r=le%20principe%20de%20dualit%C3%A9#
- CHERNOUSOV, Vladimir, ELDUQUE, Alberto, KNUS, Max-Albert, et al. Algebraic groups of type D4, triality, and composition algebras. Documenta Math, 2013, vol. 18, p. 413-468. - http://emis.ams.org/journals/DMJDMV/vol-18/17.pdf
- CUNHA, Isabel et ELDUQUE, Alberto. An extended Freudenthal magic square in characteristic 3. Journal of Algebra, 2007, vol. 317, no 2, p. 471-509. - https://doi.org/10.1016/j.jalgebra.2007.07.028
- ELDUQUE, Alberto. Symmetric composition algebras. Journal of Algebra, 1997, vol. 196, no 1, p. 283-300. - https://doi.org/10.1006/jabr.1997.7071
- ELDUQUE, Alberto. The magic square and symmetric compositions. Revista Matemática Iberoamericana, 2004, vol. 20, no 2, p. 475-491. - https://projecteuclid.org/euclid.rmi/1087482023
- KNUS, Max-Albert, et al. The book of involutions. American Mathematical Soc., 1998. -
- KNUS, Max-Albert et TIGNOL, Jean-Pierre. Triality and algebraic groups of type 3D4. Doc. Math, 2015, p. 387-405. - http://emis.ams.org/journals/DMJDMV/vol-merkurjev/knus_tignol.pdf
- TITS, Jacques. Sur la trialité et certains groupes qui s'en déduisent. Publications Mathématiques de l'IHÉS, 1959, vol. 2, p. 13-60. - http://www.numdam.org/article/PMIHES_1959__2__13_0.pdf
- VAN DER BLIJ, Frederik et SPRINGER, Tonny Albert. Octaves and triality. Nieuw Arch. Wisk, 1960, vol. 3, no 8, p. 158-169. -