En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Network approaches for personalized medicine

Bookmarks Report an error
Multi angle
Authors : Martinez-Rodriguez, Maria (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk, I will present current activities of the Computational Systems Biology group at IBM Research, Zurich, focused on the inference and exploitation of networks of molecular interactions. Focusing first on the problem of network inference, a long-standing challenge for which many methods have been proposed, I will discuss how no single inference method performs optimally across all data sets.
However, a Wisdom of the Crowds approach based on the integration of multiple inference methods can increase the robustness and high performance of the inferred networks. To that aim, we have developed COSIFER, a web-based platform that enables the inference of molecular networks using different approaches and consensus strategies. Next, I will introduce INtERAcT, an approach to extract information about molecular interactions from a text corpus in a completely unsupervised manner. INtERAcT exploits word embeddings, a state-of-the-art technology for language modelling based on deep learning that does not require text labeling for training or domain-specific knowledge, and hence, can be easily applied to different scientific domains.
Moving into the applications, I will explain how prior information about the molecular interactions in a cell can be encoded in a network, which can be further used for gene prioritization. Such strategy is exploited by NetBiTE with the goal of identifying anti-cancer drug sensitivity biomarkers. Finally, I will discuss how a probabilistic application of network dynamics can enable the reconstruction of the cell-signaling dynamics using single-cell omics.

Keywords : biological modeling; data analysis

MSC Codes :
92-10 - Mathematical modeling or simulation for problems pertaining to biology
68T09 - Computational aspects of data analysis and big data

Additional resources :
https://www.zurich.ibm.com/compsysbio/software.html

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 23/03/2020
    Conference Date : 03/03/2020
    Subseries : Research talks
    arXiv category : Computer Science ; Quantitative Biology
    Mathematical Area(s) : Probability & Statistics ; Analysis and its Applications ; Computer Science
    Format : MP4 (.mp4) - HD
    Video Time : 01:30:31
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-03-03_Rodriguez-Martinez.mp4

Information on the Event

Event Title : Thematic Month Week 5: Networks and Molecular Biology / Mois thématique Semaine 5 : Réseaux et biologie moléculaire
Event Organizers : Baudot, Anais ; Hubert, Florence ; Mossé, Brigitte ; Rémy, Elisabeth ; Tichit, Laurent ; Vignes, Matthieu
Dates : 02/03/2020 - 06/03/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2305.html

Citation Data

DOI : 10.24350/CIRM.V.19620003
Cite this video as: Martinez-Rodriguez, Maria (2020). Network approaches for personalized medicine. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19620003
URI : http://dx.doi.org/10.24350/CIRM.V.19620003

See Also

Bibliography

  • MANICA, Matteo, MATHIS, Roland, CADOW, Joris, et al. Context-specific interaction networks from vector representation of words. Nature Machine Intelligence, 2019, vol. 1, no 4, p. 181-190. - https://doi.org/10.1038/s42256-019-0036-1

  • OSKOOEI, Ali, MANICA, Matteo, MATHIS, Roland, et al. Network-based biased tree ensembles (NetBiTE) for drug sensitivity prediction and drug sensitivity biomarker identification in cancer. Scientific reports, 2019, vol. 9, no 1, p. 1-13. - https://doi.org/10.1038/s41598-019-52093-w

  • KUMAR, Sunil, LUN, Xiao-Kang, BODENMILLER, Bernd, et al. Stabilized Reconstruction of Signaling networks from Single-cell cue-Response Data. Scientific Reports, 2020, vol. 10, no 1, p. 1-9. - https://doi.org/10.1038/s41598-019-56444-5



Imagette Video

Bookmarks Report an error