En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Holomorphic Poisson structures - lecture 4

Bookmarks Report an error
Virtualconference
Authors : Pym, Brent (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The notion of a Poisson manifold originated in mathematical physics, where it is used to describe the equations of motion of classical mechanical systems, but it is nowadays connected with many different parts of mathematics. A key feature of any Poisson manifold is that it carries a canonical foliation by even-dimensional submanifolds, called its symplectic leaves. They correspond physically to regions in phase space where the motion of a particle is trapped.

I will give an introduction to Poisson manifolds in the context of complex analytic/algebraic geometry, with a particular focus on the geometry of the associated foliation. Starting from basic definitions and constructions, we will see many examples, leading to some discussion of recent progress towards the classification of Poisson brackets on Fano manifolds of small dimension, such as projective space.

Keywords : Poisson bracket; holomorphic foliation; algebraic variety

MSC Codes :
14J10 - Families, moduli, classification: algebraic theory
37F75 - Holomorphic foliations and vector fields
53D17 - Poisson manifolds; Poisson groupoids and algebroids

Additional resources :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/2020-cirm_poisson_4.pdf
https://www.cirm-math.com/uploads/2/6/6/0/26605521/2020-cirm_poisson_discussion.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/05/2020
    Conference Date : 04/05/2020
    Subseries : Research School
    arXiv category : Algebraic Geometry ; Spectral Theory ; Mathematical Physics
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:26
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-04-28_Pym_Part4.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages
Event Organizers : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan
Dates : 18/05/2020 - 22/05/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2251.html

Citation Data

DOI : 10.24350/CIRM.V.19630803
Cite this video as: Pym, Brent (2020). Holomorphic Poisson structures - lecture 4. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19630803
URI : http://dx.doi.org/10.24350/CIRM.V.19630803

See Also

Bibliography



Imagette Video

Bookmarks Report an error