En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

MMP for co-rank1 foliations - lecture 2

Bookmarks Report an error
Virtualconference
Authors : Spicer, Calum (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The goal of the Minimal Model Program (MMP) is to provide a framework in which the classification of varieties or foliations can take place. The basic strategy is to use surgery operations to decompose a variety or foliation into "building block” type objects (Fano, Calabi-Yau, or canonically polarized objects).

We first review the basic notions of the MMP in the case of varieties. We then explain work on realizing the MMP for foliations on threefolds (both in the case of codimension =1 and dimension =1 foliations). We explain and pay special attention to results such as the Cone and Contraction theorem, the Flip theorem and a version of the Basepoint free theorem.

Keywords : holomorphic foliations; minimal model program

MSC Codes :
14E30 - Minimal model program (Mori theory, extremal rays)
37F75 - Holomorphic foliations and vector fields

Additional resources :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/spicer_pdf1-2.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/05/2020
    Conference Date : 06/05/2020
    Subseries : Research School
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:39:31
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-05-06_Spicer_Part2.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages
Event Organizers : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan
Dates : 18/05/2020 - 22/05/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2251.html

Citation Data

DOI : 10.24350/CIRM.V.19631803
Cite this video as: Spicer, Calum (2020). MMP for co-rank1 foliations - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19631803
URI : http://dx.doi.org/10.24350/CIRM.V.19631803

See Also

Bibliography

  • SPICER, Calum. Higher-dimensional foliated Mori theory. Compositio Mathematica, 2020, vol. 156, no 1, p. 1-38. - https://arxiv.org/abs/1709.06850

  • CASCINI, Paolo et SPICER, Calum. MMP for co-rank one foliation on threefolds. arXiv preprint arXiv:1808.02711, 2018. - https://arxiv.org/abs/1808.02711

  • SPICER, Calum et SVALDI, Roberto. Local and global applications of the Minimal Model Program for co-rank one foliations on threefolds. arXiv preprint arXiv:1908.05037, 2019. - https://arxiv.org/abs/1908.05037



Imagette Video

Abstract

Bookmarks Report an error