En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Feynman Checkers: Number theory methods in quantum theory

Bookmarks Report an error
Virtualconference
Authors : Ustinov, Alexey (Author of the conference) ; Skopenkov, Mikhail (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In the 40s R. Feynman invented a simple model of electron motion, which is now known as Feynman's checkers. This model is also known as the one-dimensional quantum walk or the imaginary temperature Ising model. In Feynman's checkers, a checker moves on a checkerboard by simple rules, and the result describes the quantum-mechanical behavior of an electron.
We solve mathematically a problem by R. Feynman from 1965, which was to prove that the model reproduces the usual quantum-mechanical free-particle kernel for large time, small average velocity, and small lattice step. We compute the small-lattice-step and the large-time limits, justifying heuristic derivations by J. Narlikar from 1972 and by A.Ambainis et al. from 2001. The main tools are the Fourier transform and the stationary phase method.
A more detailed description of the model can be found in Skopenkov M.& Ustinov A. Feynman checkers: towards algorithmic quantum theory. (2020) https://arxiv.org/abs/2007.12879

Keywords : Feynman checkerboard; quantum walk; Ising model; Young diagram; Dirac equation; stationary phase method

MSC Codes :
05A17 - Partitions of integers (combinatorics)
11L03 - Trigonometric and exponential sums, general
11P82 - Analytic theory of partitions
33C45 - Orthogonal polynomials and functions (Chebyshev, Legendre, Gegenbauer, Jacobi, Laguerre, Hermite, Hahn, etc.)
81P68 - Quantum computation
81T25 - Quantum field theory on lattices
81T40 - Two-dimensional field theories, conformal field theories, etc.
82B20 - Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
68Q12 - Quantum algorithms and complexity

Additional resources :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/presentation-checkers-cirm.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 30/11/2020
    Conference Date : 30/11/2020
    Subseries : Research talks
    arXiv category : Combinatorics ; Number Theory ; Mathematical Physics
    Mathematical Area(s) : Combinatorics ; Number Theory ; Mathematical Physics
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:33
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-11-17_Skopenkov_Ustinov.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Workshop: Discrepancy Theory and Applications - Part 1 / Chaire Jean-Morlet 2020 - Workshop : Théorie de la discrépance et applications - Part 1
Event Organizers : Madritsch, Manfred ; Rivat, Joël ; Tichy, Robert
Dates : 30/11/2020 - 01/12/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/2257virtual.html

Citation Data

DOI : 10.24350/CIRM.V.19682203
Cite this video as: Ustinov, Alexey ;Skopenkov, Mikhail (2020). Feynman Checkers: Number theory methods in quantum theory. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19682203
URI : http://dx.doi.org/10.24350/CIRM.V.19682203

See Also

Bibliography

  • Feynman, R. P.; Hibbs, A. R.; Quantum mechanics and path integrals (International Series in Pure and Applied Physics). Maidenhead, Berksh.: McGraw-Hill Publishing Company, Ltd., 365 p. (1965). -

  • KEMPE, Julia. Quantum random walks: an introductory overview. Contemporary Physics, 2009, vol. 50, no 1, p. 339-359. - https://doi.org/10.1080/00107151031000110776

  • SKOPENKOV, Mikhail et USTINOV, Alexey. Feynman checkers: towards algorithmic quantum theory. arXiv preprint arXiv:2007.12879, 2020. - https://arxiv.org/abs/2007.12879

  • VENEGAS-ANDRACA, Salvador Elías. Quantum walks: a comprehensive review. Quantum Information Processing, 2012, vol. 11, no 5, p. 1015-1106. - https://doi.org/10.1007/s11128-012-0432-5



Bookmarks Report an error