En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stochastic modeling for population dynamics: simulation and inference - Part 2

Bookmarks Report an error
Multi angle
Authors : de Saporta, Benoîte (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The aim of this course is to present some examples of stochastic models suitable for population dynamics.
The first part will introduce a class of continuous time models called piecewise deterministic Markov processes (PDMPs). Their trajectories are deterministic with jumps at random times. They are especially suitable to model phenomena with different time scales: a fast time-sacla corresponding to the deterministic behaviour and a slow time-scale corresponding to the jumps. I'll present different biological systems that can be modelled by PDMPs, explain how they can be simulated.
The second part will focus on random models for cell division when the whole branching population is taken into account. I'll present two data sets from biological experiments trying to determine whether cell division is symmetric or not. I'll explain how statistic tools can help answer this question.

Keywords : Markov process; numeric probabilities; stochastic control; applications to biology

MSC Codes :
60Jxx - Markov processes
90Cxx - Mathematical programming
92Bxx - Mathematical biology in general

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 21/02/2020
    Conference Date : 04/02/2020
    Subseries : Research School
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:33:26
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-02-04_Saporta_Part2.mp4

Information on the Event

Event Title : Thematic Month Week 1: PDE and Probability for Biology / Mois thématique Semaine 1 : EDP et probabilité pour la biologie
Event Organizers : Chapuisat, Guillemette ; Cloez, Bertrand ; Henderson, Christopher ; Hubert, Florence ; Pudlo, Pierre ; Raoul, Gaël
Dates : 03/02/2020 - 07/02/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2301.html

Citation Data

DOI : 10.24350/CIRM.V.19604403
Cite this video as: de Saporta, Benoîte (2020). Stochastic modeling for population dynamics: simulation and inference - Part 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19604403
URI : http://dx.doi.org/10.24350/CIRM.V.19604403

See Also

Bibliography

  • BAUERLE, Nicole et LANGE, Dirk. Optimal Control of Partially Observable Piecewise Deterministic Markov Processes. SIAM Journal on Control and Optimization, 2018, vol. 56, no 2, p. 1441-1462. - https://arxiv.org/abs/1706.09142

  • BRANDEJSKY, Adrien, DE SAPORTA, Benoîte, et DUFOUR, François. Optimal stopping for partially observed piecewise-deterministic Markov processes. Stochastic Processes and their Applications, 2013, vol. 123, no 8, p. 3201-3238. - https://arxiv.org/abs/1207.2886

  • COSTA, O. L. V. et DAVIS, M. H. A. Impulse control of piecewise-deterministic processes. Mathematics of Control, Signals and Systems, 1989, vol. 2, no 3, p. 187-206. - https://doi.org/10.1007/BF02551384

  • DAVIS, M. H. A. Markov models and optimization. Monographs on Statistics & Applied Probability, vol. 49, Chapman & Hall / CRC, 1993. -

  • DE SAPORTA, Benoite, DUFOUR, François, et ZHANG, Huilong. Numerical methods for simulation and optimization of piecewise deterministic markov processes. John Wiley & Sons, 2015. -

  • GEERAERT, Alizée. Contrôle optimal stochastique des processus de Markov déterministes par morceaux et application à l'optimisation de maintenance. 2017. Thèse de doctorat. Bordeaux. - https://tel.archives-ouvertes.fr/tel-01557969/document

  • PAGÈS, Gilles. A space quantization method for numerical integration. Journal of computational and applied mathematics, 1998, vol. 89, no 1, p. 1-38. - https://doi.org/10.1016/S0377-0427(97)00190-8

  • PAGÈS, Gilles, PHAM, Huyên, et PRINTEMS, Jacques. An optimal Markovian quantization algorithm for multi-dimensional stochastic control problems. Stochastics and dynamics, 2004, vol. 4, no 04, p. 501-545. - https://doi.org/10.1142/S0219493704001231

  • PASIN, Chloé. Modélisation et optimisation de la réponse à des vaccins et à des interventions immunothérapeutiques: application au virus Ebola et au VIH. 2018. Thèse de doctorat. Bordeaux. - https://hal.inria.fr/tel-01973077/document

  • PHAM, Huyên, RUNGGALDIER, Wolfgang, et SELLAMI, Afef. Approximation by quantization of the filter process and applications to optimal stopping problems under partial observation. Monte Carlo Methods and Applications mcma, 2005, vol. 11, no 1, p. 57-81. - https://doi.org/10.1515/1569396054027283



Bookmarks Report an error