En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stochastic modeling for population dynamics: simulation and inference - Part 3

Bookmarks Report an error
Multi angle
Authors : de Saporta, Benoîte (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The aim of this course is to present some examples of stochastic models suitable for population dynamics.
The first part will introduce a class of continuous time models called piecewise deterministic Markov processes (PDMPs). Their trajectories are deterministic with jumps at random times. They are especially suitable to model phenomena with different time scales: a fast time-sacla corresponding to the deterministic behaviour and a slow time-scale corresponding to the jumps. I'll present different biological systems that can be modelled by PDMPs, explain how they can be simulated.
The second part will focus on random models for cell division when the whole branching population is taken into account. I'll present two data sets from biological experiments trying to determine whether cell division is symmetric or not. I'll explain how statistic tools can help answer this question.

Keywords : Markov process; numeric probabilities; stochastic control; applications to biology

MSC Codes :
60Jxx - Markov processes
90Cxx - Mathematical programming
92Bxx - Mathematical biology in general

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 21/02/2020
    Conference Date : 04/02/2020
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 01:14:33
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-02-04_Saporta_Part3.mp4

Information on the Event

Event Title : Thematic Month Week 1: PDE and Probability for Biology / Mois thématique Semaine 1 : EDP et probabilité pour la biologie
Event Organizers : Chapuisat, Guillemette ; Cloez, Bertrand ; Henderson, Christopher ; Hubert, Florence ; Pudlo, Pierre ; Raoul, Gaël
Dates : 03/02/2020 - 07/02/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2301.html

Citation Data

DOI : 10.24350/CIRM.V.19604503
Cite this video as: de Saporta, Benoîte (2020). Stochastic modeling for population dynamics: simulation and inference - Part 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19604503
URI : http://dx.doi.org/10.24350/CIRM.V.19604503

See Also

Bibliography

  • COWAN, Richard et STAUDTE, Robert. The bifurcating autoregression model in cell lineage studies. Biometrics, 1986, p. 769-783. - http://dx.doi.org/10.2307/2530692

  • STEWART, Eric J., MADDEN, Richard, PAUL, Gregory, et al. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS biology, 2005, vol. 3, no 2. - https://doi.org/10.1371/journal.pbio.0030045

  • GUYON, Julien, et al. Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. The Annals of Applied Probability, 2007, vol. 17, no 5/6, p. 1538-1569. - https://arxiv.org/abs/0710.5434

  • GÉGOUT-PETIT, Anne, DE SAPORTA, Benoîte, et BERCU, Bernard. Asymptotic Analysis for Bifurcating Autoregressive Processes via a martingale approach. - https://arxiv.org/abs/0807.0528

  • DELMAS, Jean-François et MARSALLE, Laurence. Detection of cellular aging in a Galton–Watson process. Stochastic Processes and their Applications, 2010, vol. 120, no 12, p. 2495-2519. - https://dx.doi.org/10.1016/j.spa.2010.07.002

  • DE SAPORTA, Benoîte, GÉGOUT-PETIT, Anne, MARSALLE, Laurence, et al. Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electronic Journal of Statistics, 2011, vol. 5, p. 1313-1353. - https://dx.doi.org/10.1214/11-EJS643

  • WANG, Ping, ROBERT, Lydia, PELLETIER, James, et al. Robust growth of Escherichia coli. Current biology, 2010, vol. 20, no 12, p. 1099-1103. - https://doi.org/10.1016/j.cub.2010.04.045

  • DE SAPORTA, Benoîte, GÉGOUT-PETIT, Anne, et MARSALLE, Laurence. Asymmetry tests for bifurcating auto-regressive processes with missing data. Statistics & Probability Letters, 2012, vol. 82, no 7, p. 1439-1444. - https://arxiv.org/abs/1112.3745

  • DE SAPORTA, Benoîte, GÉGOUT-PETIT, Anne, et MARSALLE, Laurence. Random coefficients bifurcating autoregressive processes. ESAIM: Probability and Statistics, 2014, vol. 18, p. 365-399. - https://arxiv.org/abs/1205.3658

  • DE SAPORTA, Benoíte, GÉGOUT-PETIT, Anne, et MARSALLE, Laurence. Statistical study of asymmetry in cell lineage data. Computational Statistics & Data Analysis, 2014, vol. 69, p. 15-39. - https://dx.doi.org/10.1016/j.csda.2013.07.025

  • DELYON, Bernard, DE SAPORTA, Benoîte, KRELL, Nathalie, et al. Investigation of asymmetry in E. coli growth rate. arXiv preprint arXiv:1509.05226, 2015. - https://arxiv.org/abs/1509.05226



Bookmarks Report an error