En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Coevolution of habitat use in stochastic environments

Bookmarks Report an error
Multi angle
Authors : Schreiber, Sebastian J. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Species live and interact in landscapes where enviornmental conditions vary both in time and space. In the face of this spatial-temporal heterogeneity, species may co-evolve their habitat choices which determine their spatial distributions. To understand this coevolution, I present an analysis of a general class of stochastic Lotka-Volterra models that account for space implicitly. For these equations, a (stochastic) coevolutionarily stable strategy (coESS) is a set of habitat choice strategies for each species that, with high probability, resists invasion attempts from mutant subpopulations utilizing other habitat choice strategies. We show that the coESS is characterized by a system of second-order equations. This characterization implies that the stochastic per-capita growth rates are negative in all occupied patches for all species despite all of the species coexisting. Applying this characterization to the coevolution of habitat-choice of competitors and predator-prey systems identifies under what environmental conditions, natural selection excorcises "the ghost of competition past'' and generates enemy-free and victimless habitats. Collectively, these results highlight the importance of temporal fluctuations, spatial heterogeneity and species interactions on the evolution of species spatial distributions.

Keywords : Stochastic Lotka-Volterra dynamics; evolutionary stable strategies; habitat selection; environmental stochasticity

MSC Codes :
37H10 - Generation - Random and stochastic difference and differential equations
92D25 - Population dynamics (general)

Additional resources :
https://www.cirm-math.fr/RepOrga/2302/Slides/Schreiber_CIRM_Week2_2020.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 02/03/2020
    Conference Date : 13/02/2020
    Subseries : Research talks
    arXiv category : Quantitative Biology ; Dynamical Systems
    Mathematical Area(s) : Probability & Statistics ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 00:36:56
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-02-13_Schreiber.mp4

Information on the Event

Event Title : Thematic Month Week 2: Mathematical Models in Evolutionary Biology / Mois thématique Semaine 2 : Modèles mathématiques en biologie de l'évolution
Event Organizers : Champagnat, Nicolas ; Coville, Jérôme ; Gomulkiewicz, Richard ; Hamel, Francois ; Roques, Lionel
Dates : 10/02/2020 - 14/02/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2302.html

Citation Data

DOI : 10.24350/CIRM.V.19606803
Cite this video as: Schreiber, Sebastian J. (2020). Coevolution of habitat use in stochastic environments. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19606803
URI : http://dx.doi.org/10.24350/CIRM.V.19606803

See Also

Bibliography

  • BENAIM, Michel. Stochastic persistence. arXiv preprint arXiv:1806.08450, 2018. - https://arxiv.org/abs/1806.08450

  • CONNELL, Joseph H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 1980, p. 131-138. - http://dx.doi.org/10.2307/3544421

  • FURRER, Roman D. et PASINELLI, Gilberto. Empirical evidence for source–sink populations: a review on occurrence, assessments and implications. Biological Reviews, 2016, vol. 91, no 3, p. 782-795. - https://doi.org/10.1111/brv.12195

  • HAMILTON, William D. Extraordinary sex ratios. Science, 1967, vol. 156, no 3774, p. 477-488. - http://dx.doi.org/10.1126/science.156.3774.477

  • HENING, Alexandru, NGUYEN, Dang H., et al. Coexistence and extinction for stochastic Kolmogorov systems. The Annals of Applied Probability, 2018, vol. 28, no 3, p. 1893-1942. - http://dx.doi.org/10.1214/17-AAP1347

  • HOLT, Robert D. On the evolutionary stability of sink populations. Evolutionary Ecology, 1997, vol. 11, no 6, p. 723-731. - https://doi.org/10.1023/A:1018438403047

  • M. J. JEFFRIES, J. H. LAWTON, Enemy free space and the structure of ecological communities, Biological Journal of the Linnean Society, Volume 23, Issue 4, December 1984, Pages 269–286. - https://doi.org/10.1111/j.1095-8312.1984.tb00145.x

  • KRIVAN, V., CRESSMAN, R., SCHNEIDER, C. The ideal free distribution: a review and synthesis of the game-theoretic perspective. Theoretical Population Biology, 2008, vol. 73, no 3, p. 403-425 - https://doi.org/10.1016/j.tpb.2007.12.009

  • PARKER, G.A. Searching for mates. In “Behavioural Ecology: an
    Evolutionary Approach”, JR Krebs and NB Davies, 1978. -

  • PULLIAM, H. Ronald. Sources, sinks, and population regulation. The American Naturalist, 1988, vol. 132, no 5, p. 652-661. - https://doi.org/10.1086/284880

  • SCHREIBER, Sebastian J., BENAÏM, Michel, et ATCHADÉ, Kolawolé AS. Persistence in fluctuating environments. Journal of Mathematical Biology, 2011, vol. 62, no 5, p. 655-683. - https://doi.org/10.1007/s00285-010-0349-5

  • SCHREIBER, Sebastian J. The evolution of patch selection in stochastic environments. The American Naturalist, 2012, vol. 180, no 1, p. 17-34. - https://doi.org/10.1086/665655

  • SCHREIBER, Sebastian J., FOX, Laurel R., et GETZ, Wayne M. Coevolution of contrary choices in host-parasitoid systems. The American Naturalist, 2000, vol. 155, no 5, p. 637-648. - https://doi.org/10.1086/303347

  • SMITH, J. Maynard et PRICE, George R. The logic of animal conflict. Nature, 1973, vol. 246, no 5427, p. 15-18. - https://doi.org/10.1038/246015a0



Bookmarks Report an error