En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Complexity of Gröbner bases computations and applications to cryptography - lecture 1

Bookmarks Report an error
Virtualconference
Authors : Gorla, Elisa (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will start from reviewing Gröbner bases and their connection to polynomial system solving. The problem of solving a polynomial system of equations over a finite field has relevant applications to cryptography and coding theory. For many of these applications, being able to estimate the complexity of computing a Gröbner basis is crucial. With these applications in mind, I will review linear-algebra based algorithms, which are currently the most efficient algorithms available to compute Gröbner bases. I will define and compare several invariants, that were introduced with the goal of providing an estimate on the complexity of computing a Gröbner basis, including the solving degree, the degree of regularity, and the last fall degree. Concrete examples will complement the theoretical discussion.

Keywords : Gröbner bases; Castelnuovo-Mumford regularity; solving degree; lest fall degree

MSC Codes :
13P10 - Gröbner bases; other bases for ideals and modules

Additional resources :
https://www.cirm-math.fr/RepOrga/2564/Slides/Gorla-day1.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 19/03/2021
    Conference Date : 02/03/2021
    Subseries : Research School
    arXiv category : Commutative Algebra
    Mathematical Area(s) : Algebra
    Format : MP4 (.mp4) - HD
    Video Time : 01:33:37
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-02_Gorla_1.mp4

Information on the Event

Event Title : French Computer Algebra Days / JNCF - Journées nationales de calcul formel
Event Organizers : Bardet, Magali ; Busé, Laurent ; Koseleff, Pierre-Vincent ; Vaccon, Tristan
Dates : 01/03/2021 - 05/03/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2564.html

Citation Data

DOI : 10.24350/CIRM.V.19720603
Cite this video as: Gorla, Elisa (2021). Complexity of Gröbner bases computations and applications to cryptography - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19720603
URI : http://dx.doi.org/10.24350/CIRM.V.19720603

See Also

Bibliography

  • CAMINATA, Alessio et GORLA, Elisa. Solving multivariate polynomial systems and an invariant from commutative algebra. arXiv preprint arXiv:1706.06319, 2017. - https://arxiv.org/abs/1706.06319

  • CAMINATA, Alessio et GORLA, Elisa. The complexity of minrank. arXiv preprint arXiv:1905.02682, 2019. - https://arxiv.org/abs/1905.02682

  • HUANG, Ming-Deh A., KOSTERS, Michiel, YANG, Yun, et al. On the last fall degree of zero-dimensional Weil descent systems. Journal of Symbolic Computation, 2018, vol. 87, p. 207-226. - https://arxiv.org/abs/1505.02532



Bookmarks Report an error