En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Selected results in real harmonic analysis in the rational Dunkl setting

Bookmarks Report an error
Virtualconference
Authors : Dziubański, Jacek (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The goal of the talk is to present selected results in real harmonic analysis in the rational Dunkl setting. We shall start by deriving estimates for the generalized translations$$\tau_{\mathbf{x}} f(-\mathbf{y})=c_{k}^{-1} \int_{\mathbb{R}^{N}} E(\mathbf{x}, i \xi) E(\mathbf{y},-i \xi) \mathcal{F} f(\xi) d w(\xi)$$of certain radial and non-radial functions $f$ on $\mathbb{R}^{N}$, including estimates for the integral kernel of the heat Dunkl semigroup. Here $d w(\mathbf{x})=$ $\prod_{\alpha \in R}|\langle\alpha, \mathbf{x}\rangle|^{k(\alpha)} d \mathbf{x}$ denotes the associated measure, $E(\mathbf{x}, \mathbf{y})$ is the Dunkl kernel, and $\mathcal{F} f(\xi)=c_{k}^{-1} \int_{\mathbb{R}^{N}} f(\mathbf{x}) E(-i \xi, \mathbf{x}) f(\mathbf{x}) d w(\mathbf{x})$ is the Dunkl transform. The obtained estimates will be given by means of the distance $d(\mathbf{x}, \mathbf{y})$ of the orbit of $\mathbf{x}$ to the orbit of $\mathbf{y}$ under the action of the reflection group $G$, that is,$$d(\mathbf{x}, \mathbf{y})=\min _{\sigma \in G}\|\sigma(\mathbf{x})-\mathbf{y}\|$$the Euclidean distance $\|\mathbf{x}-\mathbf{y}\|$, and $d w$-volumes of the Euclidean balls and they will be in the spirit of estimates needed in real harmonic analysis on spaces of homogeneous type.Then, if time permits, we shall discuss selected results, parallel to classical ones, which are proved by utilizing the obtained estimates for the generalized translation. In particular, we will be interested in:- boundedness of maximal functions on various function spaces,- characterizations of the real Hardy space $H^{1}$ in the Dunkl setting- boundedness of the Dunkl transform multiplier operators,- boundedness of singular integral operators,- upper and lower bounds for Littlewood-Paley square functions. The results are joint works with Jean-Philippe Anker and Agnieszka Hejna.

MSC Codes :
42B20 - Singular and oscillatory integrals, several variables
42B25 - Maximal functions, Littlewood-Paley theory
47B38 - Operators on function spaces (general)
47G10 - Integral operators, See also {45P05}

Additional resources :
https://www.cirm-math.fr/RepOrga/2404/Slides/Luminy_Jacek_Dziubanski.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/12/2021
    Conference Date : 19/10/2021
    Subseries : Research talks
    arXiv category : Functional Analysis
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:35
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-19_Dziubanski.mp4

Information on the Event

Event Title : Modern Analysis Related to Root Systems with Applications / Analyse moderne liée aux systèmes de racines avec applications
Event Organizers : Anker, Jean-Philippe ; Graczyk, Piotr ; Rösler, Margit ; Sawyer, Patrice
Dates : 18/10/2021 - 22/10/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2404.html

Citation Data

DOI : 10.24350/CIRM.V.19821703
Cite this video as: Dziubański, Jacek (2021). Selected results in real harmonic analysis in the rational Dunkl setting. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19821703
URI : http://dx.doi.org/10.24350/CIRM.V.19821703

See Also

Bibliography



Bookmarks Report an error