Authors : Paolini, Gianluca (Author of the conference)
CIRM (Publisher )
Abstract :
I will talk about my result joint with S. Shelah establishing that the Borel space of torsion-free Abelian groups with domain ω is Borel complete, i.e., the isomorphism relation on this Borel space is as complicated as possible, as an isomorphism relation. This solves a long-standing open problem in descriptive set theory, which dates back to the seminal paper on Borel reducibility of Friedman and Stanley from 1989. After this I will survey some recent results (also joint with S. Shelah) on the existence of uncountable Hopfian and co-Hopfian abelian groups, and on the problem of classification of countable co-Hopfian abelian and 2-nilpotent groups.
Keywords : Abelian groups; Borel completeness; co-Hopfian groups
MSC Codes :
03E15
- Descriptive set theory
20K20
- Torsion free groups, infinite rank
20K30
- Automorphisms, homomorphisms, endomorphisms, etc.
Additional resources :
https://www.cirm-math.fr/RepOrga/2370/Slides/Paolini.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 04/10/2021
Conference Date : 14/09/2021
Subseries : Research talks
arXiv category : Logic ; Group Theory
Mathematical Area(s) : Algebra ; Logic and Foundations
Format : MP4 (.mp4) - HD
Video Time : 00:52:06
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2021-09-14_Paolini.mp4
|
Event Title : XVI International Luminy Workshop in Set Theory / XVI Atelier international de théorie des ensembles Event Organizers : Fischer, Vera ; Velickovic, Boban ; Viale, Matteo Dates : 13/09/2021 - 17/09/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2370.html
DOI : 10.24350/CIRM.V.19809603
Cite this video as:
Paolini, Gianluca (2021). Torsion-free Abelian groups are Borel complete. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19809603
URI : http://dx.doi.org/10.24350/CIRM.V.19809603
|
See Also
Bibliography
- Paolini, Gianluca, and Saharon Shelah. "Torsion-Free Abelian Groups are Borel Complete." arXiv preprint arXiv:2102.12371 (2021). - https://arxiv.org/abs/2102.12371
- Paolini, Gianluca, and Saharon Shelah. "On the Existence of Uncountable Hopfian and co-Hopfian Abelian Groups." arXiv preprint arXiv:2107.11290 (2021). - https://arxiv.org/abs/2107.11290
- Gianluca Paolini and Saharon Shelah. "Co-Hopfian Groups are Complete co-Analytic". In preparation. -