En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Metallic mean Wang tiles

Bookmarks Report an error
Multi angle
Authors : Labbé, Sébastien (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : For every positive integer $n$, we introduce a set $\mathcal{T}_n$ made of $(n+3)^2$ Wang tiles (unit squares with labeled edges). We represent a tiling by translates of these tiles as a configuration $\mathbb{Z}^2 \rightarrow \mathcal{T}_n$. A configuration is valid if the common edge of adjacent tiles has the same label. For every $n \geqslant 1$, we consider the Wang shift $\Omega_n$ defined as the set of valid configurations over the tiles $\mathcal{T}_n$. The family $\left\{\Omega_n\right\}_{n \geqslant 1}$ broadens the relation between quadratic integers and aperiodic tilings beyond the omnipresent golden ratio as the dynamics of $\Omega_n$ involves the positive root $\beta$ of the polynomial $x^2-n x-1$. This root is sometimes called the $n$-th metallic mean, and in particular, the golden mean when $n=1$ and the silver mean when $n=2$. The family gathers the hallmarks of other small aperiodic sets of Wang tiles. When $n=1$, the set of Wang tiles $\mathcal{T}_1$ is equivalent to the Ammann aperiodic set of 16 Wang tiles. The tiles in $\mathcal{T}_n$ satisfy additive versions of equations verified by the Kari-Culik aperiodic sets of 14 and 13 Wang tiles. Also configurations in $\Omega_n$ are the codings of a $\mathbb{Z}^2$-action on a 2-dimensional torus by a polygonal partition like the Jeandel-Rao aperiodic set of 11 Wang tiles. The tiles can be defined as the different instances of a square shape computer chip whose inputs and outputs are 3-dimensional integer vectors. There is an almost one-to-one factor map $\Omega_n \rightarrow \mathbb{T}^2$ which commutes the shift action on $\Omega_n$ with horizontal and vertical translations by $\beta$ on $\mathbb{T}^2$. The factor map can be explicitely defined by the average of the top labels from the same row of tiles as in Kari and Culik examples. We also show that $\Omega_n$ is self-similar, aperiodic and minimal for the shift action. Also, there exists a polygonal partition of $\mathbb{T}^2$ which we show is a Markov partition for the toral $\mathbb{Z}^2$-action. The partition and the sets of Wang tiles are symmetric which makes them, like Penrose tilings, worthy of investigation. Details can be found in the preprints available at https://arxiv.org/abs/ 2312.03652 (part I) and https://arxiv.org/abs/2403. 03197 (part II). The talk will present an overview of the main results.

Keywords : Wang tiles; aperiodic tiling; monotile; renormalization; metallic mean

MSC Codes :
11B39 - Fibonacci and Lucas numbers and polynomials and generalizations
37A05 - Measure-preserving transformations
52C23 - Quasicrystals, aperiodic tilings
37B51 - Multidimensional shifts of finite type

Additional resources :
https://www.cirm-math.fr/RepOrga/3002/Slides/Labbe-CIRM2024.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/04/2024
    Conference Date : 01/04/2024
    Subseries : Research talks
    arXiv category : Dynamical Systems ; Combinatorics ; Number Theory ; Metric Geometry
    Mathematical Area(s) : Combinatorics ; Computer Science ; Dynamical Systems & ODE ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:04:28
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-04-01_Labbe.mp4

Information on the Event

Event Title : Multidimensional symbolic dynamics and lattice models of quasicrystals / Dynamique symbolique multidimensionnelle et modèles de quasi-cristaux sur réseau
Event Organizers : Chazottes, Jean-René ; Shinoda, Mao
Dates : 01/04/2024 - 05/04/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3002.html

Citation Data

DOI : 10.24350/CIRM.V.20157803
Cite this video as: Labbé, Sébastien (2024). Metallic mean Wang tiles. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20157803
URI : http://dx.doi.org/10.24350/CIRM.V.20157803

See Also

Bibliography



Imagette Video

Bookmarks Report an error