En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Poincaré duality fibrations and graph complexes

Bookmarks Report an error
Multi angle
Authors : Berglund, Alexander (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. To obtain it, we prove a parametrized version of the classical result, due to Kadeishvili and Stasheff, that the cohomology of a Poincaré duality space carries a cyclic C-infinity algebra structure. I will also discuss how this higher structure can be used to relate seemingly disparate problems in commutative algebra and differential topology: on one hand, the problem of putting multiplicative structures on minimal free resolutions and, on the other hand, the question of whether a given Poincaré duality fibration can be promoted to a smooth manifold bundle.

MSC Codes :

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 29/05/2024
    Conference Date : 06/05/2024
    Subseries : Research talks
    arXiv category : Algebraic Topology
    Mathematical Area(s) : Algebra ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:52
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-05-06_Berglund.mp4

Information on the Event

Event Title : Higher Algebra, Geometry, and Topology / Algèbre, Géométrie et Topologie Supérieures
Event Organizers : Campos, Ricardo ; Cirici, Joana ; Dotsenko, Vladimir ; Vallette, Bruno
Dates : 06/05/2024 - 10/05/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2995.html

Citation Data

DOI : 10.24350/CIRM.V.20173103
Cite this video as: Berglund, Alexander (2024). Poincaré duality fibrations and graph complexes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20173103
URI : http://dx.doi.org/10.24350/CIRM.V.20173103

See Also

Bibliography



Imagette Video

Bookmarks Report an error