Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
Let $X$ be a projective variety over a field $k$. Chow groups are defined as the quotient of a free group generated by irreducible subvarieties (of fixed dimension) by some equivalence relation (called rational equivalence). These groups carry many information on $X$ but are in general very difficult to study. On the other hand, one can associate to $X$ several cohomology groups which are "linear" objects and hence are rather simple to understand. One then construct maps called "cycle class maps" from Chow groups to several cohomological theories.
In this talk, we focus on the case of a variety $X$ over a finite field. In this case, Tate conjecture claims the surjectivity of the cycle class map with rational coefficients; this conjecture is still widely open. In case of integral coefficients, we speak about the integral version of the conjecture and we know several counterexamples for the surjectivity. In this talk, we present a survey of some well-known results on this subject and discuss other properties of algebraic cycles which are either proved or expected to be true. We also discuss several involved methods.
Codes MSC :
14C15
- (Equivariant) Chow groups and rings; motives
14C25
- Algebraic cycles
14G15
- Finite ground fields
14H05
- Algebraic functions; function fields
14J70
- Algebraic hypersurfaces
|
Informations sur la Rencontre
Nom de la Rencontre : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes Dates : 18/05/15 - 22/05/15
Année de la rencontre : 2015
URL de la Rencontre : http://conferences.cirm-math.fr/1193.html
DOI : 10.24350/CIRM.V.18764303
Citer cette vidéo:
(2015). Algebraic cycles on varieties over finite fields. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18764303
URI : http://dx.doi.org/10.24350/CIRM.V.18764303
|
Bibliographie
- Atiyah, Mi.F., & Hirzebruch, F. (1962). Analytic cycles on complex manifolds. Topology, 1, 25-45 - http://dx.doi.org/10.1016/0040-9383(62)90094-0
- Charles, F., & Pirutka, A. (2015). La conjecture de Tate entière pour les cubiques de dimension quatre. Compositio Mathematica, 151(2), 253-264 - http://dx.doi.org/10.1112/S0010437X14007386
- Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C. (1983). Torsion dans le groupe de Chow de codimension deux. Duke Mathematical Journal, 50, 763-801 - http://dx.doi.org/10.1215/S0012-7094-83-05038-X
- Pirutka, A. (2011). Sur le groupe de Chow de codimension deux des variétés sur les corps finis. Algebra & Number Theory, 5(6), 803-817 - http://dx.doi.org/10.2140/ant.2011.5.803
- Tate, J. (1994). Conjectures on algebraic cycles in $\ell$-adic cohomology. In U. Jannsen, S. Kleiman, & J.-P. Serre (Eds.), Motives. [1] (pp. 71-83). Providence, RI: American Mathematical Society. (Proceedings of Symposia in Pure Mathematics. 55-1) - http://www.ams.org/bookstore-getitem?item=PSPUM-55-1-S