En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Dubrovin's conjecture - an overview

Sélection Signaler une erreur
Multi angle
Auteurs : Cotti, Giordano (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : On the occasion of the 1998 ICM in Berlin, Boris Dubrovin (1950-2019) conjectured an intriguing connection between the enumerative geometry of a Fano variety $X$ with algebraic and geometric properties of exceptional collections in the derived category $D^{b}(X)$. The aim of Dubrovin's conjecture is twofold.
In its qualitative formulation, the conjecture asserts the equivalence of the semisimplicity condition of the quantum cohomology $Q H(X)$ and the existence of full exceptional collections in $D^{b}(X)$.
In its quantitative formulation, the conjecture prescribes explicit formulas for local invariants of $Q H(X)-$ the so-called "monodromy data" - in terms of characteristic classes of exceptional collections.
The central object for the study of these conjectural relations is a family of linear ODEs labeled by points of $Q H(X)$, called the "quantum differential equation" of $X$ ( $q D E$, for short).
The $q D E$ is a rich invariant of $X$. First, it encapsulates information on the Gromov-Witten theory of $X$. Second, it also defines local moduli invariants for the Frobenius manifold structure on $Q H(X)$. Moreover, the asymptotics and monodromy of its solutions conjecturally rule the topology and complex geometry of $X$. The study of $q D E$ s represents a challenging active area in both contemporary geometry and mathematical physics: it is continuously inspiring the introduction of new mathematical tools, ranging from algebraic geometry, the realm of integrable systems, the analysis of ODEs, to the theory of integral transforms and special functions.
In the first talk, the speaker will give a gentle introduction to the isomonodromic approach to Frobenius manifolds and quantum cohomology. In addition, a historical overview of Dubrovin's conjecture (from its origin to its recent refinements) will be presented.
In the second talk, after surveying known positive results on Dubrovin's conjecture, the speaker will discuss several further research directions including:
- analytical refinements of the theory of isomonodromic deformations to coalescing irregular singularity
- results evoking an equivariant analog of Dubrovin's conjecture - integral representations of solutions for the $q D E \mathrm{~s}$.
These talks will be based on several works of the speaker, partially joint with B. Dubrovin, D. Guzzetti, and A. Varchenko.

Mots-Clés : quantum cohomology; Frobenius manifolds; derived category

Codes MSC :
18E30 - Derived categories, triangulated categories
34M40 - Stokes phenomena and connection problems (ODE in the complex domain)
53D45 - Gromov-Witten invariants - quantum cohomology - Frobenius manifolds

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 02/05/2022
    Date de Captation : 12/04/2022
    Sous Collection : Research talks
    Catégorie arXiv : Algebraic Geometry ; Differential Geometry
    Domaine(s) : Géométrie ; Géométrie Complexe & géométrie Algébrique
    Format : MP4 (.mp4) - HD
    Durée : 01:31:38
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-04-12_Cotti.mp4

Informations sur la Rencontre

Nom de la Rencontre : D-modules: Applications to Algebraic Geometry, Arithmetic and Mirror Symmetry / D-modules: Applications en géométrie algébrique, arithmétique et symétrie miroir
Organisateurs de la Rencontre : Hertling, Claus ; Sabbah, Claude ; Sevenheck, Christian
Dates : 11/04/2022 - 15/04/2022
Année de la rencontre : 2022
URL de la Rencontre : https://conferences.cirm-math.fr/2320.html

Données de citation

DOI : 10.24350/CIRM.V.19906803
Citer cette vidéo: Cotti, Giordano (2022). Dubrovin's conjecture - an overview. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19906803
URI : http://dx.doi.org/10.24350/CIRM.V.19906803

Voir Aussi

Bibliographie

  • COTTI, Giordano, DUBROVIN, Boris, et GUZZETTI, Davide. Helix structures in quantum cohomology of Fano varieties. arXiv preprint arXiv:1811.09235, 2018. - https://doi.org/10.48550/arXiv.1811.09235

  • COTTI, Giordano. Cyclic stratum of Frobenius manifolds, Borel-Laplace $(\boldsymbol\alpha,\boldsymbol\beta) $-multitransforms, and integral representations of solutions of Quantum Differential Equations. arXiv preprint arXiv:2005.08262, 2020. - https://doi.org/10.48550/arXiv.2005.08262

  • COTTI, Giordano, DUBROVIN, Boris, et GUZZETTI, Davide. Isomonodromy deformations at an irregular singularity with coalescing eigenvalues. Duke Mathematical Journal, 2019, vol. 168, no 6, p. 967-1108. - https://doi.org/10.1215/00127094-2018-0059

  • COTTI, Giordano; VARCHENKO, Alexander . Equivariant quantum differential equation and qKZ equations for a projective space: Stokes bases as exceptional collections, Stokes matrices as Gram matrices, and Б-theorem. in Integrability, quantization, and geometry. I. Integrable systems, 2021,
    Proc. Sympos. Pure Math., 103.1, p.101-170. -



Imagette Video

Sélection Signaler une erreur