En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the unirationality of Hurwitz spaces

Sélection Signaler une erreur
Multi angle
Auteurs : Tanturri, Fabio (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this talk I will discuss about the unirationality of the Hurwitz spaces $H_{g,d}$ parametrizing d-sheeted branched simple covers of the projective line by smooth curves of genus $g$. I will summarize what is already known and formulate some questions and speculations on the general behaviour. I will then present a proof of the unirationality of $H_{12,8}$ and $H_{13,7}$, obtained via liaison and matrix factorizations. This is part of two joint works with Frank-Olaf Schreyer.

Codes MSC :
13D02 - Syzygies, resolutions, complexes
14H10 - Families, moduli (algebraic)
14M20 - Rational and unirational varieties
14Q05 - Computational aspects of algebraic curves

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 02/02/17
    Date de Captation : 26/01/17
    Sous Collection : Research talks
    Catégorie arXiv : Algebraic Geometry
    Domaine(s) : Géométrie Complexe & géométrie Algébrique
    Format : MP4 (.mp4) - HD
    Durée : 00:54:44
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2017-01-26_Tanturri.mp4

Informations sur la Rencontre

Nom de la Rencontre : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe
Organisateurs de la Rencontre : Broustet, Amaël ; Pasquier, Boris
Dates : 23/01/2017 - 27/01/17
Année de la rencontre : 2017
URL de la Rencontre : http://conferences.cirm-math.fr/1593.html

Données de citation

DOI : 10.24350/CIRM.V.19115403
Citer cette vidéo: Tanturri, Fabio (2017). On the unirationality of Hurwitz spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19115403
URI : http://dx.doi.org/10.24350/CIRM.V.19115403

Voir Aussi

Bibliographie

  • Schreyer, F.-O., & Tanturri, F. (2016). Matrix factorizations and curves in $\mathbb{P}^4$. - https://arxiv.org/abs/1611.03669

  • Schreyer, F.-O., & Tanturri, F. (work in progress). Unirational Hurwitz spaces and liaison -



Sélection Signaler une erreur