En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Universal inference using the split likelihood ratio test

Sélection Signaler une erreur
Virtualconference
Auteurs : Ramdas, Aaditya K. (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood ratio statistic, that we call “the split likelihood ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model-misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid p-values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes.

Mots-Clés : Irregular models; confidence sequences; maximum likelihood

Codes MSC :
62C05 - General considerations
62F03 - Hypothesis testing
62G10 - Nonparametric hypothesis testing
62L12 - Sequential estimation

Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/ramdas_universal.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 15/06/2020
    Date de Captation : 05/06/2020
    Sous Collection : Research talks
    Catégorie arXiv : Statistics Theory
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:34:30
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2020-06-05_Ramdas.mp4

Informations sur la Rencontre

Nom de la Rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Organisateurs de la Rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL de la Rencontre : https://www.cirm-math.com/cirm-virtual-...

Données de citation

DOI : 10.24350/CIRM.V.19642303
Citer cette vidéo: Ramdas, Aaditya K. (2020). Universal inference using the split likelihood ratio test. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19642303
URI : http://dx.doi.org/10.24350/CIRM.V.19642303

Voir Aussi

Bibliographie

  • WASSERMAN, Larry, RAMDAS, Aaditya, et BALAKRISHNAN, Sivaraman. Universal Inference Using the Split Likelihood Ratio Test. arXiv preprint arXiv:1912.11436, 2019. - https://arxiv.org/abs/1912.11436



Imagette Video

Sélection Signaler une erreur