Auteurs : Ramdas, Aaditya K. (Auteur de la conférence)
CIRM (Editeur )
Résumé :
We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood ratio statistic, that we call “the split likelihood ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model-misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid p-values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes.
Mots-Clés : Irregular models; confidence sequences; maximum likelihood
Codes MSC :
62C05
- General considerations
62F03
- Hypothesis testing
62G10
- Nonparametric hypothesis testing
62L12
- Sequential estimation
Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/ramdas_universal.pdf
|
Informations sur la Rencontre
Nom de la Rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2 Organisateurs de la Rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL de la Rencontre : https://www.cirm-math.com/cirm-virtual-...
DOI : 10.24350/CIRM.V.19642303
Citer cette vidéo:
Ramdas, Aaditya K. (2020). Universal inference using the split likelihood ratio test. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19642303
URI : http://dx.doi.org/10.24350/CIRM.V.19642303
|
Voir Aussi
-
[Virtualconference]
Experimenting in equilibrium
/ Auteur de la conférence Wager, Stefan.
-
[Virtualconference]
Structure learning for CTBN's
/ Auteur de la conférence Miasojedow, Błażej.
-
[Virtualconference]
The price of competition: effect size heterogeneity matters in high dimensions!
/ Auteur de la conférence Wang, Hua.
-
[Virtualconference]
Scaling of scoring rules
/ Auteur de la conférence Wallin, Jonas.
-
[Virtualconference]
Hierarchical bayes modeling for large-scale inference
/ Auteur de la conférence Yekutieli, Daniel.
-
[Virtualconference]
Change: detection, estimation, segmentation
/ Auteur de la conférence Siegmund, David.
-
[Virtualconference]
High-dimensional, multiscale online changepoint detection
/ Auteur de la conférence Samworth, Richard.
-
[Virtualconference]
The smoothed multivariate square-root Lasso: an optimization lens on concomitant estimation
/ Auteur de la conférence Salmon, Joseph.
-
[Virtualconference]
Knockoff genotypes: value in counterfeit
/ Auteur de la conférence Sabatti, Chiara.
-
[Virtualconference]
Optimal and maximin procedures for multiple testing problems
/ Auteur de la conférence Rosset, Saharon.
-
[Virtualconference]
Sparse multiple testing: can one estimate the null distribution ?
/ Auteur de la conférence Roquain, Etienne.
-
[Virtualconference]
Bayesian spatial adaptation
/ Auteur de la conférence Rockova, Veronika.
-
[Virtualconference]
How to estimate a density on a spider web ?
/ Auteur de la conférence Picard, Dominique.
-
[Virtualconference]
Post hoc bounds on false positives using reference families
/ Auteur de la conférence Neuvial, Pierre.
-
[Virtualconference]
Quasi logistic distributions and Gaussian scale mixing
/ Auteur de la conférence Letac, Gerard.
-
[Virtualconference]
Shrinkage estimation of mean for complex multivariate normal distribution with unknown covariance when p > n
/ Auteur de la conférence Konno, Yoshihiko.
-
[Virtualconference]
Treatment effect estimation with missing attributes
/ Auteur de la conférence Josse, Julie.
-
[Virtualconference]
Floodgate: inference for model-free variable importance
/ Auteur de la conférence Janson, Lucas.
-
[Virtualconference]
On Cholesky structures on real symmetric matrices and their applications
/ Auteur de la conférence Ishi, Hideyuki.
-
[Virtualconference]
Optimal control of false discovery criteria in the general two-group model
/ Auteur de la conférence Heller, Ruth.
-
[Virtualconference]
Isotonic Distributional Regression (IDR) - leveraging monotonicity, uniquely so!
/ Auteur de la conférence Gneiting, Tilmann.
-
[Virtualconference]
De-biasing arbitrary convex regularizers and asymptotic normality
/ Auteur de la conférence Bellec, Pierre C..
-
[Virtualconference]
Consistent model selection criteria and goodness-of-fit test for common time series models
/ Auteur de la conférence Bardet, Jean-Marc.
-
[Virtualconference]
High-dimensional classification by sparse logistic regression
/ Auteur de la conférence Abramovich, Felix.
Bibliographie
- WASSERMAN, Larry, RAMDAS, Aaditya, et BALAKRISHNAN, Sivaraman. Universal Inference Using the Split Likelihood Ratio Test. arXiv preprint arXiv:1912.11436, 2019. - https://arxiv.org/abs/1912.11436