En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the estimation of conditional quantiles - lecture 2

Sélection Signaler une erreur
Virtualconference
Auteurs : Maume-Deschamps, Véronique (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Estimation of conditional quantiles is requiered for many purposes, in particular when the conditional mean is not suffisiant to describe the impact of covariates on the dependent variable. For example, one may estimate the quantile of one financial index (e.g. WisdomTree Japan Hedged Equity Fund) knowing financial indeces from other countries. It is also requiered to estimated conditional quantiles in Quantile Oriented Sensitivity Analysis (QOSA). QOSA indices are relevant in order to quantify uncertainty on quantiles, for example in insurance operational risk contexts. We shall present several view points on conditional quantile estimation: quantile regression and improvements, Kernel based estimation, random forest estimation. We shall focus on applications to QOSA.

Mots-Clés : sensitivity analysis; uncertainty avantification

Codes MSC :
62-07 - Data analysis
62G20 - Nonparametric asymptotic efficiency

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet Chair 2020 - Research School: Quasi-Monte Carlo Methods and Applications / Chaire Jean-Morlet 2020 - Ecole: Méthode de quasi-Monte-Carlo et applications
Organisateurs de la Rencontre : Rivat, Joël ; Thonhauser, Stefan ; Tichy, Robert
Dates : 02/11/2020 - 07/11/2020
Année de la rencontre : 2020
URL de la Rencontre : https://www.chairejeanmorlet.com/2255.html

Données de citation

DOI : 10.24350/CIRM.V.19680303
Citer cette vidéo: Maume-Deschamps, Véronique (2020). On the estimation of conditional quantiles - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19680303
URI : http://dx.doi.org/10.24350/CIRM.V.19680303

Voir Aussi

Bibliographie

  • ATHEY, Susan, TIBSHIRANI, Julie, WAGER, Stefan, et al. Generalized random forests. The Annals of Statistics, 2019, vol. 47, no 2, p. 1148-1178. - https://arxiv.org/abs/1610.01271

  • BESSE, Philippe, MILHEM, Hélène, MESTRE, Olivier, et al. Comparaison de techniques de «Data Mining» pour l'adaptation statistique des prévisions d'ozone du modèle de chimie-transport MOCAGE. Pollution atmosphérique, 2007, vol. 49, no 195, p. 285-292. - https://doi.org/10.4267/pollution-atmospherique.1442

  • BREIMAN, Leo. Random forests. Machine learning, 2001, vol. 45, no 1, p. 5-32. - https://doi.org/10.1023/A:1010933404324

  • BROTO, Baptiste, BACHOC, Francois, et DEPECKER, Marine. Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution. SIAM/ASA Journal on Uncertainty Quantification, 2020, vol. 8, no 2, p. 693-716. - https://arxiv.org/abs/1812.09168

  • BROWNE, Thomas, FORT, Jean-Claude, IOOSS, Bertrand, et al. Estimate of quantile-oriented sensitivity indices. 2017. - https://hal.archives-ouvertes.fr/hal-01450891

  • CAMBANIS, Stamatis, HUANG, Steel, et SIMONS, Gordon. On the theory of elliptically contoured distributions. Journal of Multivariate Analysis, 1981, vol. 11, no 3, p. 368-385. - https://doi.org/10.1016/0047-259X(81)90082-8

  • ELIE-DIT-COSAQUE, Kevin et MAUME-DESCHAMPS, Véronique. Random forest estimation of conditional distribution functions and conditional quantiles. 2020. - https://hal.archives-ouvertes.fr/hal-02733460

  • ELIE-DIT-COSAQUE, Kevin. Qosa indices, a python package available at : - https://gitlab.com/qosa_index/qosa

  • FABREGE, Benoit et MAUME-DESCHAMPS, Véronique (2020). Conditional distribution forest: a Julia package available at: - https://github.com/bfabreges/ConditionalDistributionForest.jl

  • FORT, Jean-Claude, KLEIN, Thierry, et RACHDI, Nabil. New sensitivity analysis subordinated to a contrast. Communications in Statistics-Theory and Methods, 2016, vol. 45, no 15, p. 4349-4364. - https://arxiv.org/abs/1305.2329

  • KANO, Yutaka. Consistency property of elliptic probability density functions. Journal of Multivariate Analysis, 1994, vol. 51, no 1, p. 139-147. - https://doi.org/10.1006/jmva.1994.1054

  • KOENKER, Roger et BASSETT JR, Gilbert. Regression quantiles. Econometrica: journal of the Econometric Society, 1978, p. 33-50. - https://www.jstor.org/stable/1913643

  • MARCEAU, Etienne. Modélisation et évaltuation quantitative des risques en actuariat. Berlin : Springer, 2013. - https://doi.org/10.1007/978-2-8178-0112-4

  • MAUME-DESCHAMPS, Véronique, RULLIÈRE, Didier, et USSEGLIO-CARLEVE, Antoine. Quantile predictions for elliptical random fields. Journal of Multivariate Analysis, 2017, vol. 159, p. 1-17. - https://doi.org/10.1016/j.jmva.2017.04.007

  • MAUME-DESCHAMPS, Véronique, RULLIÈRE, Didier, et USSEGLIO-CARLEVE, Antoine. Spatial expectile predictions for elliptical random fields. Methodology and Computing in Applied Probability, 2018, vol. 20, no 2, p. 643-671. - https://doi.org/10.1007/s11009-017-9583-2

  • MAUME-DESCHAMPS, Véronique et NIANG, Ibrahima. Estimation of quantile oriented sensitivity indices. Statistics & Probability Letters, 2018, vol. 134, p. 122-127. - https://doi.org/10.1016/j.spl.2017.10.019

  • MEINSHAUSEN, Nicolai. Quantile regression forests. Journal of Machine Learning Research, 2006, vol. 7, no Jun, p. 983-999. - https://www.jmlr.org/papers/volume7/meinshausen06a/meinshausen06a.pdf

  • OWEN, Art B. et PRIEUR, Clémentine. On Shapley value for measuring importance of dependent inputs. SIAM/ASA Journal on Uncertainty Quantification, 2017, vol. 5, no 1, p. 986-1002. - https://arxiv.org/abs/1610.02080

  • SALTELLI, Andrea, TARANTOLA, Stefano, CAMPOLONGO, Francesca, et al. Sensitivity analysis in practice: a guide to assessing scientific models. New York : Wiley, 2004. - https://doi.org/10.1002/0470870958

  • SCORNET, Erwan, BIAU, Gérard, VERT, Jean-Philippe, et al. Consistency of random forests. The Annals of Statistics, 2015, vol. 43, no 4, p. 1716-1741. - https://projecteuclid.org/euclid.aos/1434546220

  • IM, Sobol'. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp, 1993, vol. 1, no 4, p. 407-414. -

  • TOROSSIAN, Léonard, PICHENY, Victor, FAIVRE, Robert, et al. A review on quantile regression for stochastic computer experiments. Reliability Engineering & System Safety, 2020, vol. 201, p. 106858. - https://doi.org/10.1016/j.ress.2020.106858

  • USSEGLIO-CARLEVE, Antoine, et al. Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors. Electronic Journal of Statistics, 2018, vol. 12, no 2, p. 4057-4093. - https://projecteuclid.org/euclid.ejs/1544583931

  • VAPNIK, Vladimir N. et CHERVONENKIS, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & its Applications, 1971, vol. 16, n°2, p. 264-280. - https://doi.org/10.1137/1116025



Sélection Signaler une erreur