Auteurs : ... (Auteur de la conférence)
... (Editeur )
Résumé :
We answer a question raised by Misiurewicz and Rodrigues concerning the family of degree 2 circle maps $F_{\lambda}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ defined by
$$
F_{\lambda}(x):=2 x+a+\frac{b}{\pi} \sin (2 \pi x), \text { with } \lambda:=(a, b) \in \mathbb{R} / \mathbb{Z} \times(0,1)
$$
We prove that if $F_{\lambda o}^{\circ n}-$ id has a zero of multiplicity 3 in $\mathbb{R} / \mathbb{Z}$, then there is a system of local coordinates $(\alpha, \beta): W \rightarrow \mathbb{R}^{2}$ defined in a neighborhood $W$ of $\lambda_{0}$, such that $\alpha\left(\lambda_{0}\right)=\beta\left(\lambda_{0}\right)=0$ and $F_{\lambda}^{\circ n}-$ id has a multiple zero with $\lambda \in W$ if and only if $\beta^{3}(\lambda)=\alpha^{2}(\lambda)$. This shows that the tips of tongues are regular cusps. This is joint work with K. Banerjee, J. Canela and A. Epstein.
Mots-Clés : Holomorphic dynamics; transcendental dynamics; transversality; quadratic differentials
Codes MSC :
37F10
- Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F45
37G10
- Bifurcations of singular points
|
Informations sur la Rencontre
Nom de la Rencontre : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe Dates : 20/09/2021 - 24/09/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2546.html
DOI : 10.24350/CIRM.V.19811203
Citer cette vidéo:
(2021). Tips of tongues in the double standard family. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19811203
URI : http://dx.doi.org/10.24350/CIRM.V.19811203
|
Voir Aussi
Bibliographie
- BANERJEE, Kuntal, BUFF, Xavier, CANELA, Jordi, et al. Tips of Tongues in the Double Standard Family. arXiv preprint arXiv:1903.01795, 2019. - https://arxiv.org/abs/1903.01795
- DEZOTTI, Alexandre. Connectedness of the Arnold tongues for double standard maps. Proceedings of the American Mathematical Society, 2010, p. 3569-3583. - https://doi.org/10.1090/S0002-9939-10-10355-4
- EPSTEIN A. Towers of finite type complex analytic maps, Ph. D. Thesis, CUNY, 1993. -
- MISIUREWICZ, Michał et RODRIGUES, Ana. Double standard maps. Communications in mathematical physics, 2007, vol. 273, no 1, p. 37-65. - https://doi.org/10.1007/s00220-007-0223-5
- MISIUREWICZ, Michał et RODRIGUES, Ana. On the tip of the tongue. Journal of Fixed Point Theory and Applications, 2008, vol. 3, no 1, p. 131-141. - https://doi.org/10.1007/s11784-008-0052-y
- MISIUREWICZ, Michał et RODRIGUES, Ana. Non-generic cusps. Transactions of the American Mathematical Society, 2011, vol. 363, no 7, p. 3553-3572. - https://doi.org/10.1090/S0002-9947-2011-05114-7