En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Generalised Kontsevich graphs, topological recursion and r-spin intersection numbers

Sélection Signaler une erreur
Multi angle
Auteurs : Garcia-Failde, Elba (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : In this talk I will provide a brief and gentle introduction to Witten's conjecture, which predicts that the generating series of certain intersection numbers on the moduli space of curves is a tau function of the KdV integrable hierarchy, as a motivation for r-spin Witten's conjecture that concerns much more complicated geometric objects and specialises to the original conjecture for r=2. The r=2 conjecture was proved for the first time by Kontsevich making use of maps arising from a cubic hermitian matrix model with an external field. Together with R. Belliard, S. Charbonnier and B. Eynard, we studied the combinatorial model that generalises Kontsevich maps to higher r. Making use of some auxiliary models we manage to find a Tutte-like recursion for these maps and to massage it into a topological recursion. We also show a relation between a particular case of our maps and the r-spin intersection numbers, which allows us to prove that these satisfy topological recursion. Finally, I will explain how, in joint work with G. Borot and S. Charbonnier, we relate another specialisation of our models to fully simple maps, and how this identification helps us prove that fully simple maps satisfy topological recursion for the spectral curve in which one exchanges x and y from the spectral curve for ordinary maps. This solved a conjecture from G. Borot and myself from '17.

Codes MSC :
05A15 - Exact enumeration problems, generating functions
05C30 - Enumeration in graph theory
14H70 - Relationships of algebraic curves with integrable systems
14N10 - Enumerative problems (combinatorial problems)
14N35 - Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants
37K10 - Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies (KdV, KP, Toda, etc.)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2528/Slides/CIRM22_EGF_2.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 04/02/2022
    Date de Captation : 18/01/2022
    Sous Collection : Research talks
    Catégorie arXiv : Combinatorics ; Mathematical Physics ; Algebraic Geometry
    Domaine(s) : Combinatoires ; Géométrie Complexe & géométrie Algébrique ; Physique Mathématique
    Format : MP4 (.mp4) - HD
    Durée : 00:59:07
    Audience : Chercheurs ; Etudiants Science Cycle 2
    Download : https://videos.cirm-math.fr/2022-01-18_Garcia.mp4

Informations sur la Rencontre

Nom de la Rencontre : Random Geometry / Géométrie aléatoire
Organisateurs de la Rencontre : Curien, Nicolas ; Goldschmidt, Christina ; Le Gall, Jean-François ; Miermont, Grégory ; Rhodes, Rémi
Dates : 17/01/2022 - 21/01/2022
Année de la rencontre : 2022
URL de la Rencontre : https://conferences.cirm-math.fr/2528.html

Données de citation

DOI : 10.24350/CIRM.V.19877303
Citer cette vidéo: Garcia-Failde, Elba (2022). Generalised Kontsevich graphs, topological recursion and r-spin intersection numbers. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19877303
URI : http://dx.doi.org/10.24350/CIRM.V.19877303

Voir Aussi

Bibliographie

  • BELLIARD, Raphaël, CHARBONNIER, Séverin, EYNARD, Bertrand, et al. Topological recursion for generalised Kontsevich graphs and r-spin intersection numbers. arXiv preprint arXiv:2105.08035, 2021. - https://arxiv.org/abs/2105.08035



Imagette Video

Sélection Signaler une erreur