En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Scaling limits of random trees and graphs - Lecture 2

Sélection Signaler une erreur
Multi angle
Auteurs : Goldschmidt, Christina (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : In the last 30 years, random combinatorial structures and their scaling limits have formed a flourishing area of research at the interface between probability and combinatorics. In this mini-course, I aim to show some of the beautiful theory that arises when considering scaling limits of random trees and graphs. Trees are fundamental objects in combinatorics and the enumeration of different classes of trees is a classical subject. In the first section, we will take as our basic object the genealogical tree of a critical Bienaymé-Galton-Watson branching process. (As well as having nice probabilistic properties, this class turns out to include various natural types of random combinatorial tree in disguise.) In the same way as Brownian motion is the universal scaling limit for centred random walks of finite step-size variance, it turns out that all critical Bienaymé-Galton-Watson trees with finite offspring variance have a universal scaling limit, Aldous' Brownian continuum random tree. The simplest model of a random network is the Erdôs-Rényi random graph : we take $n$ vertices, and include each possible edge independently with probability $p$. One of the most well-known features of this model is that it undergoes a phase transition. Take $p=c / n$. Then for $c<1$, the components have size $O(\log n)$, whereas for $c>1$, there is a giant component, comprising a positive fraction of the vertices, and a collection of components of size $O(\log n)$. (These statements hold with probability tending to 1 as $n \rightarrow \infty$.) In the second section, we will focus on the critical setting, $c=1$, where the largest components have size of order $n^{2 / 3}$, and are "close" to being trees, in the sense that they have only finitely many more edges than a tree with the same number of vertices would have. We will see how to use a careful comparison with a branching process in order to derive the scaling limit of the critical Erdôs-Rényi random graph. The rapidly growing field of analytic combinatorics in several variables uses tools from complex analysis, algebraic geometry, topology, and computer algebra to characterize the asymptotic properties of sequences defined by multivariate generating functions. This course will survey some of the methods in the field, with a focus on explicit results that can be used in applications across a variety of mathematical and scientific domains.

Mots-Clés : Random graphs; Gromov-Hausdorff distance; scaling limits; continuum random tree

Codes MSC :
05C80 - Random graphs
60C05 - Combinatorial probability
60F05 - Central limit and other weak theorems

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2696/Slides/ALEALecture1.pdf
https://www.cirm-math.fr/RepOrga/2696/Notes/noteGoldschmidt.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 11/04/2022
    Date de Captation : 22/03/2022
    Sous Collection : Research School
    Catégorie arXiv : Probability
    Domaine(s) : Combinatoires ; Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 01:12:12
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-03-22_Goldschmidt.mp4

Informations sur la Rencontre

Nom de la Rencontre : ALEA Days / Journées ALEA
Organisateurs de la Rencontre : Bouttier, Jérémie ; Miermont, Grégory ; Nadeau, Philippe
Dates : 21/03/2022 - 25/03/2022
Année de la rencontre : 2022
URL de la Rencontre : https://conferences.cirm-math.fr/2696.html

Données de citation

DOI : 10.24350/CIRM.V.19897803
Citer cette vidéo: Goldschmidt, Christina (2022). Scaling limits of random trees and graphs - Lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19897803
URI : http://dx.doi.org/10.24350/CIRM.V.19897803

Voir Aussi

Bibliographie



Sélection Signaler une erreur