Auteurs : Delon, Françoise (Auteur de la conférence)
CIRM (Editeur )
Résumé :
In this talk there is no valued field but we try to find one. Or, to be more modest, we try first to find a group. Our problematic is the trichotomy of Zilber. Given an abstract structure which shares certain model theoretical properties with an infinite group (or with an infinite field) can we define an infinite group (or an infinite field) in this structure?
The initial conjecture was about strongly minimal structures and it turned out to be wrong. It becomes correct in the framework of Zariski structures. These are minimal structures in which some definable sets are identified as closed, the connection between closed and definable sets being similar to what happens in algebraically closed fields with the topologies of Zariski. This is the content of a large volume of work by Ehud Hrushovski and Boris Zilber. O-minimal structures and their Cartesian powers arrive equipped with a topology. Although these topologies are definitely not Noetherian, the situation presents great analogies with Zariski structures. Now, Kobi Peterzil and Sergei Starchenko have shown Zilber's Conjecture in this setting (up to a nuance).
The question then arises naturally in $C$-minimal structures. Let us recall what they are. $C$-sets can be understood as reducts of ultrametric spaces: if the distance is $d$, we keep only the information given by the ternary relation $C(x, y, z)$ iff $d(x, y)=d(x, z)>d(y, z)$. So, there is no longer a space of distances, we can only compare distances to a same point. A $C$-minimal structure $M$ is a $C$-set possibly with additional structure in which every definable subset is a Boolean combination of open or closed balls, more exactly of their generalizations in the framework of $C$-relations, cones and 0-level sets. Moreover, this must remain true in any structure $N$ elementary equivalent to $M$. Zilber's conjecture only makes sense if the structure is assumed to be geometric. Which does not follow from $C$-minimality.
Nearly 15 years ago Fares Maalouf has shown that an inifinite group is definable in any nontrivial locally modular geometric $C$-minimal structure. Fares, Patrick Simonetta and myself do the same today in a non-modular case. Our proof draws heavily on that of Peterzil and Starchenko.
Mots-Clés : group construction; definability; $C$-minimality
Codes MSC :
03C60
- Model-theoretic algebra
03C65
- Models of other mathematical theories
12J10
- Valued fields
12L12
- Model theory
Ressources complémentaires :
https://webusers.imj-prg.fr/~zoe.chatzidakis/CIRM/Delon-slides.pdf
|
Informations sur la Rencontre
Nom de la Rencontre : Model theory of valued fields / Théorie des modèles des corps valués Organisateurs de la Rencontre : Chatzidakis, Zoé ; Jahnke, Franziska ; Rideau-Kikuchi, Silvain Dates : 29/05/2023 - 02/06/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2761.html
DOI : 10.24350/CIRM.V.20050903
Citer cette vidéo:
Delon, Françoise (2023). Group construction in $C$-minimal structures. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20050903
URI : http://dx.doi.org/10.24350/CIRM.V.20050903
|
Voir Aussi
-
[Multi angle]
Beautiful pairs revisited
/ Auteur de la conférence Ye, Jinhe.
-
[Multi angle]
An Imaginary Ax-Kochen/Ershov principle: the equicharacteristic zero case
/ Auteur de la conférence Vicaria, Mariana.
-
[Multi angle]
Existential closedness of $\mathbb{Q}^{alg}$ as a globally valued field
/ Auteur de la conférence Szachniewicz, Michal.
-
[Multi angle]
Interpretable, definably semisimple groups in various valued fields
/ Auteur de la conférence Peterzil, Ya'acov.
-
[Multi angle]
The existential closedness problem for analytic solutions of difference equations
/ Auteur de la conférence Padgett, Adele.
-
[Multi angle]
Multi topological fields and NTP2
/ Auteur de la conférence Montenegro Guzman, Samaria.
-
[Multi angle]
A Hasse principle over Berkovich analytic curves
/ Auteur de la conférence Mehmeti, Vlerë.
-
[Multi angle]
Definable convex and henselian valuations on ordered fields
/ Auteur de la conférence Krapp, Lothar Sebastian.
-
[Multi angle]
Beyond the Fontaine-Wintenberger theorem
/ Auteur de la conférence Kartas, Konstantinos.
-
[Multi angle]
Around NIP Noetherian domains
/ Auteur de la conférence Johnson, Will.
-
[Multi angle]
An invitation to globally valued fields
/ Auteur de la conférence Hrushovski, Ehud.
-
[Multi angle]
Lang-Weil type bounds in finite difference fields
/ Auteur de la conférence Hils, Martin.
-
[Multi angle]
Residue field domination
/ Auteur de la conférence Haskell, Deirdre.
-
[Multi angle]
Motivic integration with pseudo-finite residue field and fundamental lemma
/ Auteur de la conférence Forey, Arthur.
-
[Multi angle]
Tropical functions on skeletons
/ Auteur de la conférence Ducros, Antoine.
-
[Multi angle]
Contracting endomorphisms of valued fields
/ Auteur de la conférence Dor, Yuval.
-
[Multi angle]
Ax-Kochen-Ershov principles for finitely ramified henselian fields
/ Auteur de la conférence Dittmann, Philip.
-
[Multi angle]
Homology groups in algebraically closed valued fields
/ Auteur de la conférence Cubides Kovacsics, Pablo.
-
[Multi angle]
Existential uniform p-adic integration and descent for integrability and largest poles
/ Auteur de la conférence Cluckers, Raf.
-
[Multi angle]
Polynomials that vanish on many sets of codimension 2
/ Auteur de la conférence Ben Yaacov, Itaï.
-
[Multi angle]
The model theory of Hardy fields and linear differential equations
/ Auteur de la conférence Aschenbrenner, Matthias.
-
[Multi angle]
Transfer of decidability for existential theories of (valued) fields
/ Auteur de la conférence Anscombe, Sylvy.
Bibliographie