En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stochastic control for medical treatment optimization

Sélection Signaler une erreur
Multi angle
Auteurs : de Saporta, Benoîte (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : We are interested in monitoring patients in remission from cancer. Our aim is to detect their relapses as soon as possible, as well as detect the type of relapse, to decide on the appropriate treatment to be given. Available data are some marker level of the rate of cancerous cells in the blood which evolves continuously but is measured at discrete (large) intervals and through noise. The patient's state of health is modeled by a piecewise deterministic Markov process (PDMP). Several decisions must be taken from these incomplete observations: what treatment to give, and when to schedule the next medical visit. After presenting a suitable class of controlled PDMPs to model this situation, I will describe the corresponding stochastic control problem and will present the resolution strategy that we adopted. The objective is to obtain an approximation of the value function (optimal performance) as well as build an explicit policy applicable in practice and as close to optimality as possible. The results will be illustrated by simulations calibrated on a cohort of a clinical trial on multiple myeloma provided by the Center of Cancer Research in Toulouse.

Mots-Clés : Continuous time Markov process; dynamic programming; Hidden process; numerical approximation; partially observed Markov decision process

Codes MSC :
60J05 - Markov processes with discrete parameter
60J25 - Continuous-time Markov processes on general state spaces
93E11 - Filtering
93E20 - Optimal stochastic control

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Benoite_de_Saporta.pdf

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de Publication : 27/09/2023
    Date de Captation : 06/09/2023
    Sous Collection : Research talks
    Domaine(s) : Théorie du Contrôle & Optimisation ; Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:52:29
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-06_De_Saporta.mp4

Informations sur la Rencontre

Nom de la Rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Organisateurs de la Rencontre : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2390.html

Données de citation

DOI : 10.24350/CIRM.V.20088403
Citer cette vidéo: de Saporta, Benoîte (2023). Stochastic control for medical treatment optimization. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20088403
URI : http://dx.doi.org/10.24350/CIRM.V.20088403

Voir Aussi

Bibliographie

  • ALMUDEVAR, Anthony. A dynamic programming algorithm for the optimal control of piecewise deterministic Markov processes. SIAM Journal on Control and Optimization, 2001, vol. 40, no 2, p. 525-539. - https://doi.org/10.1137/S0363012999364474

  • BÄUERLE, Nicole et LANGE, Dirk. Optimal control of partially observable piecewise deterministic Markov processes. SIAM Journal on Control and Optimization, 2018, vol. 56, no 2, p. 1441-1462. - https://doi.org/10.1137/17M1134731

  • BÄUERLE, Nicole et RIEDER, Ulrich. Markov decision processes with applications to finance. Springer Science & Business Media, 2011. - https://doi.org/10.1007/978-3-642-18324-9

  • BRANDEJSKY, Adrien, DE SAPORTA, Benoîte, et DUFOUR, François. Optimal stopping for partially observed piecewise-deterministic Markov processes. Stochastic Processes and their Applications, 2013, vol. 123, no 8, p. 3201-3238. - https://doi.org/10.1016/j.spa.2013.03.006

  • CALVIA, Alessandro. Stochastic filtering and optimal control of pure jump Markov processes with noise-free partial observation. ESAIM: Control, Optimisation and Calculus of Variations, 2020, vol. 26, p. 25. - https://doi.org/10.1051/cocv/2019020

  • CLEYNEN, Alice et DE SAPORTA, Benoîte. Change-point detection for piecewise deterministic Markov processes. Automatica, 2018, vol. 97, p. 234-247. - https://doi.org/10.1016/j.automatica.2018.08.011

  • DO VALLE COSTA, Oswaldo Luiz et DUFOUR, François. Continuous average control of piecewise deterministic Markov processes. Springer, 2013. - https://doi.org/10.1007/978-1-4614-6983-4

  • COSTA, Oswaldo Luiz do Valle et CAB, Raymundo. Impulse and continuous control of piecewise deterministic Markov processes. Stochastics: An International Journal of Probability and Stochastic Processes, 2000, vol. 70, no 1-2, p. 75-107. - https://doi.org/10.1080/17442500008834246

  • COSTA, Oswaldo LV et DAVIS, M. H. A. Impulse control of piecewise-deterministic processes. Mathematics of Control, Signals and Systems, 1989, vol. 2, p. 187-206. - https://doi.org/10.1007/BF02551384

  • DAVIS, Mark HA. Piecewise‐deterministic Markov processes: A general class of non‐diffusion stochastic models. Journal of the Royal Statistical Society: Series B (Methodological), 1984, vol. 46, no 3, p. 353-376. - http://www.jstor.org/stable/2345677

  • DAVIS, M. (1993). Markov models and optimization vol. 49 of Monographs on Statistics and Applied Probability. Chapman & Hall, London. -

  • DE SAPORTA, Benoîte et DUFOUR, François. Numerical method for impulse control of piecewise deterministic Markov processes. Automatica, 2012, vol. 48, no 5, p. 779-793. - https://doi.org/10.1016/j.automatica.2012.02.031

  • DE SAPORTA, Benoîte, DUFOUR, François, et GEERAERT, Alizée. Optimal strategies for impulse control of piecewise deterministic Markov processes. Automatica, 2017, vol. 77, p. 219-229. - https://doi.org/10.1016/j.automatica.2016.11.039

  • DE SAPORTA, Benoite, DUFOUR, François, et ZHANG, Huilong. Numerical methods for simulation and optimization of piecewise deterministic Markov processes: application to reliability. John Wiley & Sons, 2015. -

  • DEMPSTER, M. A. H. et YE, J. J. Impulse control of piecewise deterministic Markov processes. The Annals of Applied Probability, 1995, p. 399-423. - https://doi.org/10.1214/aoap/1177004771

  • DUFOUR, François, HORIGUCHI, Masayuki, et PIUNOVSKIY, A. B. Optimal impulsive control of piecewise deterministic Markov processes. Stochastics, 2016, vol. 88, no 7, p. 1073-1098. - https://doi.org/10.1080/17442508.2016.1197925

  • PIUNOVSKIY, Alexey, PLAKHOV, Alexander, TORRES, Delfim FM, et al. Optimal impulse control of dynamical systems. SIAM Journal on Control and Optimization, 2019, vol. 57, no 4, p. 2720-2752. - https://doi.org/10.1137/18M1212069



Imagette Video

Sélection Signaler une erreur