En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Projective Reed Muller codes revisited

Sélection Signaler une erreur
Multi angle
Auteurs : Ghorpade, Sudhir (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Projective Reed Muller Codes constitute an interesting class of linear codes, which was introduced by Gilles Lachaud in 1988. Questions about their minimum distance are intimately related to the question about the maximum possible number of F-rational points in the m-dimensional projective space on a hypersurface of degree d in m+1 variables with coefficients in a finite field F. Michael Tsfasman gave a conjectural formula for this maximum possible number of points on such hypersurfaces, and the conjecture was soon proved in the affirmative by Jean-Pierre Serre. In all these works, it is generally assumed that the degree d is at most q, where q is the number of elements in F. Anders Sørensen considered in 1991 more general projective Reed Muller codes where d can be larger than q. From a coding theoretical perspective, it is more natural to consider this larger class. Sørensen proposed a formula for the minimum distance in the general case, and also studied the duals of the projective Reed-Muller codes.
We shall revisit the work of Sorensen by pointing out some minor inaccuracies in his proof of the minimum distance. We then propose an alternative proof. Further, we address the question of obtaining a characterization of the minimum weight codewords of projective Reed Muller codes.
This is a joint work with Rati Ludhani.

Mots-Clés : linear codes; Reed-Muller codes; minimum distance

Codes MSC :
14G15 - Finite ground fields
94B05 - Linear codes, general

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2804/Slides/ALCOCRYPT-Ghorpade-2023.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 08/03/2023
    Date de Captation : 23/02/2023
    Sous Collection : Research talks
    Catégorie arXiv : Information Theory ; Algebraic Geometry
    Domaine(s) : Algèbre ; Combinatoires
    Format : MP4 (.mp4) - HD
    Durée : 00:34:34
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-02-23_Ghorpade.mp4

Informations sur la Rencontre

Nom de la Rencontre : ALCOCRYPT
Organisateurs de la Rencontre : Bonnecaze, Alexis ; Mesnager, Sihem ; Solé, Patrick
Dates : 20/02/2023 - 24/02/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2804.html

Données de citation

DOI : 10.24350/CIRM.V.20006003
Citer cette vidéo: Ghorpade, Sudhir (2023). Projective Reed Muller codes revisited. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20006003
URI : http://dx.doi.org/10.24350/CIRM.V.20006003

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur