En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Tutorial on cellular automata - lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Ollinger, Nicolas (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : This tutorial surveys computational aspects of cellular automata, a discrete dynamical model introduced by S. Ulam and J. von Neumann in the late 40s: a regular grid of finite state cells evolving synchronously according to a common local rule described by a finite automaton.

Formally, a cellular automaton is a tuple $(d, S, N, f)$ where $d \in \mathbb{N}$ is the dimension of the cellular space, $S$ is the finite set of states, $N \subseteq_{\text {finite }} \mathbb{Z}^d$ is the finite neighborhood and $f: S^N \rightarrow S$ is the local rule of the cellular automaton.

A configuration $c \in S^{\mathbb{Z}^d}$ is a coloring of the cellular space by states.

The global transition function $G: S^{\mathbb{Z}^d} \rightarrow S^{\mathbb{Z}^d}$ applies $f$ uniformly according to $N$, i.e. for every configuration $c \in S^{\mathbb{Z}^d}$ and every position $z \in \mathbb{Z}^d$ it holds
$$G(c)(z)=f\left(c\left(z+v_1\right), \ldots, c\left(z+v_m\right)\right) \quad \text { where } N=\left\{v_1, \ldots, v_m\right\} .$$
A space-time diagram $\Delta \in S^{\mathbb{Z}^d \times \mathbb{N}}$ is obtained by piling successive configurations of an orbit, i.e. for every time step $t \in \mathbb{N}$ it holds $\Delta_{t+1}=G\left(\Delta_t\right)$.

Computing inside the cellular space: The first part of the tutorial considers cellular automata as a universal model of computation. Several notions of universality are discussed: boolean circuit simulation, Turing universality, intrinsic universality. Special abilities of cellular automata as a model of massive parallelism are then investigated.

Computing properties of cellular automata: The second part of the tutorial considers properties of cellular automata and their computation. De Bruijn diagrams and associated regular languages are introduced as tools to decide injectivity and surjectivity of the global transition function in the one-dimensional case. Both immediate and dynamical properties are introduced, in particular the notion of limit set.

Computation and reduction: undecidability results: The last part of the tutorial considers computing by reduction to establish undecidability results on some properties of cellular automata: injectivity and surjectivity of the global transition function in higher dimensions, nilpotency and intrinsic universality in every dimension, a Rice's theorem for limit sets.

Mots-Clés : cellular automata; models of computation; decision problems; undecidability

Codes MSC :
37B10 - Symbolic dynamics
37B15 - Cellular automata
68Q05 - Models of computation (Turing machines, etc.)
68Q45 - Formal languages and automata
68Q80 - Cellular automata (theory of computing)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/3148/Slides/cirm24.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 19/02/2024
    Date de Captation : 31/01/2024
    Sous Collection : Research School
    Catégorie arXiv : Formal Languages and Automata Theory ; Discrete Mathematics ; Dynamical Systems
    Domaine(s) : Informatique ; Systèmes Dynamiques & EDO
    Format : MP4 (.mp4) - HD
    Durée : 01:27:27
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-01-31_Ollinger_part1.mp4

Informations sur la Rencontre

Nom de la Rencontre : Research School in Discrete Mathematics and Computer Science / École de recherche en mathématiques discrètes et informatique - WEEK 1
Organisateurs de la Rencontre : Cassaigne, Julien ; Chalopin, Jérémie ; Chepoi, Victor ; Guillon, Pierre ; Moutot, Etienne ; Theyssier, Guillaume
Dates : 29/01/2024 - 02/02/2024
Année de la rencontre : 2024
URL de la Rencontre : https://conferences.cirm-math.fr/3148.html

Données de citation

DOI : 10.24350/CIRM.V.20136603
Citer cette vidéo: Ollinger, Nicolas (2024). Tutorial on cellular automata - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20136603
URI : http://dx.doi.org/10.24350/CIRM.V.20136603

Voir Aussi

Bibliographie

  • DELORME, Marianne. An introduction to cellular automata: some basic definitions and concepts. In : Cellular automata: a parallel model. Dordrecht : Springer Netherlands, 1999. p. 5-49. - http://dx.doi.org/10.1007/978-94-015-9153-9_1

  • KARI, Jarkko. Theory of cellular automata: A survey. Theoretical computer science, 2005, vol. 334, no 1-3, p. 3-33. - https://doi.org/10.1016/j.tcs.2004.11.021

  • BÄCK, Thomas, KOK, Joost N., et ROZENBERG, G. Handbook of natural computing. Springer, Heidelberg, 2012. -



Imagette Video

Sélection Signaler une erreur