En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Congruent number problem and BSD conjecture

Sélection Signaler une erreur
Multi angle
Auteurs : Zhang, Shou-Wu (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : A thousand years old problem is to determine when a square free integer $n$ is a congruent number ,i,e, the areas of right angled triangles with sides of rational lengths. This problem has a some beautiful connection with the BSD conjecture for elliptic curves $E_n : ny^2 = x^3 - x$. In fact by BSD, all $n= 5, 6, 7$ mod $8$ should be congruent numbers, and most of $n=1, 2, 3$ mod $8$ should not be congruent numbers. Recently, Alex Smith has proved that at least 41.9% of $n=1,2,3$ satisfy (refined) BSD in rank $0$, and at least 55.9% of $n=5,6,7$ mod $8$ satisfy (weak) BSD in rank $1$. This implies in particular that at last 41.9% of $n=1,2,3$ mod $8$ are not congruent numbers, and 55.9% of $n=5, 6, 7$ mod $8$ are congruent numbers. I will explain the ingredients used in Smith's proof: including the classical work of Heath-Brown and Monsky on the distribution F_2 rank of Selmer group of E_n, the complex formula for central value and derivative of L-fucntions of Waldspurger and Gross-Zagier and their extension by Yuan-Zhang-Zhang, and their mod 2 version by Tian-Yuan-Zhang.

Codes MSC :
11D25 - Cubic and quartic equations
11G40 - $L$-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11R29 - Class numbers, class groups, discriminants

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 09/06/16
    Date de captation : 25/05/16
    Sous collection : Research talks
    arXiv category : Number Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:49:00
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-05-25_Zhang.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair: Relative trace formula, periods, L-functions and harmonic analysis / Chaire Jean-Morlet : Formule des traces relatives, périodes, fonctions L et analyse harmonique
Organisateurs de la rencontre : Chaudouard, Pierre-Henri ; Heiermann, Volker ; Prasad, Dipendra ; Sakellaridis, Yiannis
Dates : 23/05/2016 - 27/05/16
Année de la rencontre : 2016
URL Congrès : https://www.chairejeanmorlet.com/1351.html

Données de citation

DOI : 10.24350/CIRM.V.18981703
Citer cette vidéo: Zhang, Shou-Wu (2016). Congruent number problem and BSD conjecture. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18981703
URI : http://dx.doi.org/10.24350/CIRM.V.18981703

Voir aussi

Bibliographie



Sélection Signaler une erreur