En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Towers of Ramanujan graphs

Sélection Signaler une erreur
Multi angle
Auteurs : Li, Winnie (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : A $d$-regular graph is Ramanujan if its nontrivial eigenvalues in absolute value are bounded by $2\sqrt{d-1}$. By means of number-theoretic methods, infinite families of Ramanujan graphs were constructed by Margulis and independently by Lubotzky-Phillips-Sarnak in 1980's for $d=q+ 1$, where q is a prime power. The existence of an infinite family of Ramanujan graphs for arbitrary d has been an open question since then. Recently Adam Marcus, Daniel Spielman and Nikhil Srivastava gave a positive answer to this question by showing that any bipartite $d$-regular Ramanujan graph has a $2$-fold cover that is also Ramanujan. In this talk we shall discuss their approach and mention similarities with function field towers.

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 03/06/2014
    Date de captation : 05/06/2013
    Sous collection : Research talks
    arXiv category : Number Theory ; Representation Theory
    Domaine : Number Theory ; Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Durée : 01:02:47
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2013-06-05_Li.mp4

Informations sur la Rencontre

Nom de la rencontre : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes
Organisateurs de la rencontre : Ballet, Stéphane ; Perret, Marc ; Zaytsev, Alexey
Dates : 03/06/13 - 07/06/13
Année de la rencontre : 2013
URL Congrès : https://www.cirm-math.fr/Archives/?EX=in...

Données de citation

DOI : 10.24350/CIRM.V.18582803
Citer cette vidéo: Li, Winnie (2013). Towers of Ramanujan graphs. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18582803
URI : http://dx.doi.org/10.24350/CIRM.V.18582803

Bibliographie



Sélection Signaler une erreur